Skip to main content

Proteomics assisted profiling of antimicrobial peptide signatures from black pepper (Piper nigrum L.)

Abstract

Plant antimicrobial peptides are the interesting source of studies in defense response as they are essential components of innate immunity which exert rapid defense response. In spite of abundant reports on the isolation of antimicrobial peptides (AMPs) from many sources, the profile of AMPs expressed/identified from single crop species under certain stress/physiological condition is still unknown. This work describes the AMP signature profile of black pepper and their expression upon Phytophthora infection using label-free quantitative proteomics strategy. The differential expression of 24 AMPs suggests that a combinatorial strategy is working in the defense network. The 24 AMP signatures belonged to the cationic, anionic, cysteine-rich and cysteine-free group. As the first report on the possible involvement of AMP signature in Phytophthora infection, our results offer a platform for further study on regulation, evolutionary importance and exploitation of theses AMPs as next generation molecules against pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Anandaraj M (2000) Diseases of black pepper. In: Ravindran PN (ed) Black pepper (Piper nigrum L.). Harwood Academic Publishers, New York, pp 239–268

    Google Scholar 

  2. Asiegbu FO, Choi W, Li G, Nahalkova J, Dean RA (2003) Isolation of a novel antimicrobial peptide gene (SpAMP) homologue from Pinus sylvestris (Scots pine) following infection with the root rot fungus Heterobasidion annosum. FEMS Microbiol Lett 228:27–31

    CAS  Article  PubMed  Google Scholar 

  3. Cammue BPA, De Bolle MFC, Terras FRG, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J Biol Chem 267:2228–2233

    CAS  PubMed  Google Scholar 

  4. Egorov TA, Odintsova TI, Vitaliy A, Pukhalsky VA, Grishin EV (2005) Diversity of wheat anti-microbial peptides. Peptides 26:2064–2073

    CAS  Article  PubMed  Google Scholar 

  5. Fan B, Shen L, Liu K, Zhao D, Yu M, Sheng J (2008) Interaction between nitric oxide and hydrogen peroxide in post harvest tomato resistance response to Rhizopus nigricans. J Sci Food Agric 88:1238–1244

    CAS  Article  Google Scholar 

  6. Gasteiger E, Hoogland C, Gattiker A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  7. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8(9):e73957

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Hammami R, Ben Hamida J, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res D 963:8

    Google Scholar 

  9. Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418–422

    CAS  Article  PubMed  Google Scholar 

  10. Ke T, Cao H, Huang J, Hu F, Huang J, Dong C, Ma X, Yu J, Mao H, Wang X, Niu Q, Hui F, Liu S (2015) EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus. BMC Genom 16:653

    Article  Google Scholar 

  11. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174

    CAS  Article  PubMed  Google Scholar 

  12. Matejuk A, Leng Q, Begum MD, Woodle MC, Scaria P, Chou S-T, Mixson AJ (2010) Peptide-based antifungal therapies against emerging infections. Drugs Future 35(3):197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Gozdzicka-Jozefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59(3):181–196

    CAS  Article  Google Scholar 

  14. Parashina EV, Serdobinskii LA, Kalle EG, Lavorova NV, Avetnov VA, Lumin VG, Naroditskii BS (2000) Genetic engineering of oilseed rape and tomato plants expressing a radish defensin gene. Russ J Plant Physiol 47:417–423

    CAS  Google Scholar 

  15. Park CJ, Park CB, Hong SS, Lee HS, Lee SY, Kim SC (2000) Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd_spurse, Capsella bursa-pastoris. Plant Mol Biol 44:187–197

    CAS  Article  PubMed  Google Scholar 

  16. Pelegrini PB, Del Sarito RP, Silva ON, Franco OL, Grossi-de-sa MF (2011) Antimicrobial peptides from plants: what they are and how they probably work. Biochem Res Int 2011:250349

    Google Scholar 

  17. Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691

    CAS  Article  PubMed  Google Scholar 

  18. Rahnamaeian M (2011) Antimicrobial peptides: modes of mechanism, modulation of defense responses. Plant Signal Behav 6:1325–1332

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Robinson MW, Hutchinson AT, Donnelly S (2012) Antimicrobial peptides: utility players in innate immunity. Front Immunol 3:325

    Article  PubMed  PubMed Central  Google Scholar 

  20. Salzet M, Stefano G (2003) Chromacin-like peptide in leeches. Neuro Endocrinol Lett 24(3/4):227–232

    CAS  PubMed  Google Scholar 

  21. Sarika, Iquebalb MA, Rai A (2012) Biotic stress resistance in agriculture through antimicrobial peptides. Peptides 36:322–330

    CAS  Article  PubMed  Google Scholar 

  22. Scott MG, Dullaghan E, Mookherjee N, Waldbrook M, Thompson A, Wang A, Lee K, Doria S, Hamil P, Yu JJ, Li Y, Donini O, Guarna MM, Finlay BB, North JR, Hancock RE (2007) An anti infective peptide that selectively modulates the innate immune response. Nat Biotechnol 25:465–472

    CAS  Article  PubMed  Google Scholar 

  23. Sharma A, Singla D, Rashid M, Raghava GPS (2014) Designing of peptides with desired half-life in intestine-like environment. BMC Bioinformatics 15:282

    Article  PubMed  PubMed Central  Google Scholar 

  24. Silva ON, Porto WF, Migliolo L, Mandal SM, Gomes DG, Holanda HH, Silva RS, Dias SC, Costa MP, Costa CR, Silva MR, Rezende TM, Franco OL (2012) Cn-AMP1: a new promiscuous peptide with potential for microbial infections treatment. Biopolymers 98(4):322–331

    CAS  Article  PubMed  Google Scholar 

  25. Song R, Wei R, Luo H, Wang D (2012) Isolation and characterization of an antibacterial peptide fraction from the pepsin hydrolysate of half-fin anchovy (Setipinna taty). Molecules 17:2980–2991

    CAS  Article  PubMed  Google Scholar 

  26. Umadevi P, Anandaraj M (2015) An efficient protein extraction method for proteomic analysis of black pepper (Piper nigrum L.) and generation of protein map using nano LC-LTQ Orbitrap mass spectrometry. Plant Omics 8(6):500–507

    CAS  Google Scholar 

  27. Van den Bergh KPB, Proost P, Van Damme J, Coosemans J, Van Damme EJM, Peumans WJ (2002) Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.). FEBS Lett 530(1–3):181–185

    Article  PubMed  Google Scholar 

  28. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44:D1094–D1097

    CAS  Article  PubMed  Google Scholar 

  29. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093

    CAS  Article  PubMed  Google Scholar 

  30. Wegener KL, Brinkworth CS, Bowie JH (2001) Bioactive dahlein peptides from the skin secretions of the Australian aquatic frog Litoria dahlii: sequence determination by electrospray mass spectrometry. Rapid Commun Mass Spectrom 15(18):1726–1734

    CAS  Article  PubMed  Google Scholar 

  31. Weinhold A, Wielsch N, Svatos A, Baldwin IT (2015) Label-free nanoUPLC-MSE based quantification of antimicrobial peptides from the leaf apoplast of Nicotiana attenuate. BMC Plant Biol 15:18

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang L, Rozek A, Hancock REW (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276(38):35714–35722

    CAS  Article  PubMed  Google Scholar 

  33. Zhou M, Hu Q, Li Z, Li D, Chen C, Luo H (2011) Expression of a novel antimicrobial peptide Penaeidin 4-1 in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance. PLoS ONE 6(9):e24677

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Zipfel C (2009) Early molecular events in PAMP-triggerd immunity. Curr Opin Plant Biol 12:414–420

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Indian Council of Agricultural Research, New Delhi for funding through Outreach program on Phytophthora, Fusarium and Ralstonia diseases of horticultural and field crops (PhytoFuRa) and mass spectrometry facility, C-CAMP, NCBS, Bangalore for the LC/MS analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Umadevi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Umadevi, P., Soumya, M., George, J.K. et al. Proteomics assisted profiling of antimicrobial peptide signatures from black pepper (Piper nigrum L.). Physiol Mol Biol Plants 24, 379–387 (2018). https://doi.org/10.1007/s12298-018-0524-5

Download citation

Keywords

  • Proteomics
  • Antimicrobial peptides
  • Differential expression
  • Host–pathogen interaction