Skip to main content

Characterization of biomass sorghum for copper phytoremediation: photosynthetic response and possibility as a bioenergy feedstock from contaminated land

Abstract

In order to decrease the concentration of toxic metals in contaminated lands, phytoextraction can be suitable considering the use of plant species with high potential for biomass production, such as biomass sorghum (Sorghum bicolor L.). We assessed a biomass sorghum (BRS716) potential as a copper phytoextractor as well as the physiological stability under this stressful condition. A completely randomized experimental design was used for a greenhouse experiment in which sorghum plants were submitted to a range of Cu2+ concentrations: 2.3, 10.9, 19.6, 30.5, 37.6 and 55.6 mg dm−3. The plant growth was not affected by increasing Cu2+ concentrations, suggesting that this species is tolerant to copper. There was a decrease in photosynthetic rate according to the increase in Cu2+ concentration, but not at a level that could disturb plant metabolism and eventual death. The values obtained for transfer index ranged from 0.62 to 0.11 which evidenced the restriction of Cu2+ transport to the aerial parts. The more Cu2+ available in soil, the smaller the amount of Cu2+ transported to aerial parts of sorghum. So, our results show that biomass sorghum has potential to be used for Cu2+ phytoextraction in concentration of up to 20 mg dm−3. Also, in heavily Cu2+ polluted sites, it can be used to produce biomass for bioenergy purpose, promoting a low rate of Cu2+ extraction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Andreazza R, Bortolon L, Pieniz S, Giacometti M, Roehrs DD, Lambais MR, Camargo FO (2011) Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste. Biol Trace Elem Res 143:1729–1739

    Article  CAS  PubMed  Google Scholar 

  2. Antoniadis V, Golia EE, Shaheen SM, Rinklebe J (2017) Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece. Environ Geochem Health 39:319–330

    Article  CAS  PubMed  Google Scholar 

  3. Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  4. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Parque J, Makino T, Kirkham MB, ScheckeL K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  5. Bonfranceschi AB, Flocco CG, Donati ER (2009) Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment. J Hazard Mater 165:366–371

    Article  CAS  PubMed  Google Scholar 

  6. Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: micronutrients. In: Maschner P (ed) Marschner’s mineral nutrition of higher plants, 4th ed. Academic Press

  7. Carvalho MEA, Piotto FA, Nogueira ML, Gomes-junior FG, Maria H, Pescarin C, Pizzaia D, Azevedo RA (2018) Cadmium exposure triggers genotype-dependent changes in seed vigor and germination of tomato offspring. Protoplasma 255:989–999

    Article  CAS  PubMed  Google Scholar 

  8. Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435

    Article  CAS  PubMed  Google Scholar 

  9. Evangelou MWH, Conesa HM, Robinson BH, Schulin R (2012) Biomass production on trace element-contaminated land: a review. Environ Eng Sci 29:823–839

    Article  CAS  Google Scholar 

  10. Evangelou MWH, Papazoglou EG, Robinson BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants. Springer, Switzerland, pp 115–132

    Google Scholar 

  11. Fässler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R (2010) Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agric Ecosyst Environ 136:49–58

    Article  CAS  Google Scholar 

  12. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Cien Agrotec 35:1039–1042

    Article  Google Scholar 

  13. Gomez-Sagasti MT, Epelde L, Alkorta I, Garbisu C (2016) Reflections on soil contamination research from a biologist point of view. Appl Soil Ecol 105:207–210

    Article  Google Scholar 

  14. González-Mendoza D, Espadas y Gil F, Escoboza-Garcia F, Santamaría JM, Zapata-Perez O (2013) Copper stress on photosynthesis of black mangle (Avicennia germinans). An Acad Bras Cienc 85:665–670

    Article  PubMed  Google Scholar 

  15. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta Mol Cell Res 1763:595–608

    Article  CAS  Google Scholar 

  16. Jia W, Lv S, Feng J, Li J, Li Y, Li S (2016) Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils. Environ Sci Pollut Res 23:18823–18831

    Article  CAS  Google Scholar 

  17. Jia W, Miao F, Lv S, Feng J, Zhou S, Zhang X, Wang D, Li S, Li Y (2017) Identification for the capability of Cd-tolerance, accumulation and translocation of 96 sorghum genotypes. Ecotoxicol Environ Saf 145:391–397

    Article  CAS  PubMed  Google Scholar 

  18. Kabata-Pendias A (2004) Soil-plant transfer of trace elements—an environmental issue. Geoderma 122:143–149

    Article  CAS  Google Scholar 

  19. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  CAS  PubMed  Google Scholar 

  20. Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  CAS  PubMed  Google Scholar 

  21. Li C, Xiao B, Wang QH, Yao SH, Wu JY (2014) Phytoremediation of Zn- and Cr-contaminated soil using two promising energy grasses. Water Air Soil Pollut 225:2027–2039

    Article  CAS  Google Scholar 

  22. Li Y, Wang Q, Wang L, He LY, Sheng XF (2016) Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: implications for Sorghum sudanense biomass production and phytostabilization. Ecotoxicol Environ Saf 124:163–168

    Article  CAS  PubMed  Google Scholar 

  23. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  24. Liu X, Shen Y, Lou L, Ding C, Cai Q (2009) Copper tolerance of the biomass crops elephant grass (Pennisetum purpureum Schumach), vetiver grass (Vetiveria zizanioides) and the upland reed (Phragmites australis) in soil culture. Biotechnol Adv 27:633–640

    Article  CAS  PubMed  Google Scholar 

  25. Mehr MR, Keshavarzi B, Moore F, Sharifi R, Lahijanzadeh A, Kermani M (2017) Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. J Afr Earth Sci 132:16–26

    Article  CAS  Google Scholar 

  26. Merchant S, Dreyfuss BW (1998) Posttranslational assembly of photosynthetic metalloproteins. Annu Rev Plant Physiol Plant Mol Biol 49:25–51

    Article  CAS  PubMed  Google Scholar 

  27. Nogueira TAR, Abreu-Junior CH, Alleoni LRF, He Z, Soares MR, Santos Vieira C, Lessa LGF, Capra GF (2018) Background concentrations and quality reference values for some potentially toxic elements in soils of São Paulo State, Brazil. J Environ Manag 221:10–19

    Article  CAS  Google Scholar 

  28. Palma P, Ledo L, Alvarenga P (2015) Assessment of trace element pollution and its environmental risk to freshwater sediments influenced by anthropogenic contributions: the case study of Alqueva reservoir (Guadiana Basin). CATENA 128:174–184

    Article  CAS  Google Scholar 

  29. Panda P, Sahoo L, Panda SK (2015) Heavy metal and metalloid stress in plants: the genomics perspective. In: Chakraborty U, Chakraborty B (eds) Abiotic stresses in crop plants. CABI

  30. Peñarrubia L, Romero P, Carrió-Seguí A, Andrés-Bordería A, Moreno J, Sanz A (2015) Temporal aspects of copper homeostasis and its crosstalk with hormones. Front Plant Sci 6:1–18

    Article  Google Scholar 

  31. Rabêlo FHS, Borgo L, Lavres J (2018) The use of forage grasses for the phytoremediation of heavy metals: plant tolerance mechanisms, classifications, and new prospects. In: Matichenkov V (ed) Phytoremediation: methods, management and assessment. Nova Science Publishers, New York, pp 59–102

    Google Scholar 

  32. Rahman MM, Azirun SM, Boyce AN (2013) Enhanced accumulation of copper and lead in Amaranth (Amaranthus paniculatus), Indian Mustard (Brassica juncea) and Sunflower (Helianthus annuus). PLoS ONE 8:e62941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  34. Rodrigues Castro FM, Bruzi AT, Rodrigues Nunes JA, Costa Parrella RA, Romeiro Lombardi GM, Brant Albuquerque CJ, Lopes M (2015) Agronomic and energetic potential of biomass sorghum genotypes. Am J Plant Sci 6:1862–1873

    Article  CAS  Google Scholar 

  35. Sauerbeck DR (1991) Plant element and soil properties governing uptake and availability of heavy metals derived from sewage sludge. Water Air Soil Pollut 57:227–237

    Article  Google Scholar 

  36. Sharma P, Sirhindi G, Singh AK, Kaur H, Mushtaq R (2017) Consequences of copper treatment on pigeon pea photosynthesis, osmolytes and antioxidants defense. Physiol Mol Biol Plants 23:809–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sipos G, Solti A, Checo V, Vashegyi I, Tóth B, Cseh E, Fodor F (2013) Heavy metal accumulation and tolerance of energy grass (Elymus elongates subsp. Ponticus cv. Szarvasi -1) grown in hydroponic culture. Plant Physiol Biochem 68:96–103

    Article  CAS  PubMed  Google Scholar 

  38. Soudek P, Petrová Š, Vaňková R, Song J, Vaněk T (2014) Accumulation of heavy metals using Sorghum sp. Chemosphere 104:15–24

    Article  CAS  PubMed  Google Scholar 

  39. Souza LA, Monteiro CC, Carvalho RF, Gratão PL, Azevedo RA (2017) Dealing with abiotic stresses: an integrative view of how phytohormones control abiotic stress-induced oxidative stress. Theor Exp Plant Physiol 29:109–127

    Article  CAS  Google Scholar 

  40. Souza LA, Camargos LS, Carvalho MEA (2018) Toxic metal phytoremediation using high biomass non-hyperaccumulator crops: new possibilities for bioenergy resources. In: Matichenkov V (ed) Phytoremediation: methods, management and assessment. Nova Science Publishers, New York, pp 1–26

    Google Scholar 

  41. Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12:63–84

    Article  CAS  Google Scholar 

  42. Subramani T, Florence HR, Kavitha M (2014) Climate change energy and decentralized solid waste management. Int J Eng Res Appl 4:205–216

    Google Scholar 

  43. Thyberg KL, Tonjes DJ (2016) Drivers of food waste and their implications for sustainable policy development. Resour Conserv Recycl 106:110–123

    Article  Google Scholar 

  44. Tian YL, Zhang HY, Guo C, Wei XF (2015) Morphological responses, biomass yield, and bioenergy potential of sweet sorghum cultivated in cadmium-contaminated soil for biofuel. Int J Green Energy 12:577–584

    Article  CAS  Google Scholar 

  45. Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water Air Soil Pollut 164:155–172

    Article  CAS  Google Scholar 

  46. Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575

    Article  CAS  PubMed  Google Scholar 

  47. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge: Dr. Rafael Augusto Costa Parrella to kindly give biomass sorghum BRS-716 seeds; FAPESP for the following Grant (2015/09567-9); IF Goiano, FEIS-UNESP, FAPEG, CNPq and CAPES for general fundings to institutions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucas Anjos Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix: Complementary statistical data

Appendix: Complementary statistical data

This table displays statistical elements that showed significance in results for net photosynthesis (A, µmol CO2 m−2 s−1); copper concentration in shoot (C.C.S.—mg kg−1); copper content in shoot (C.C.S.*—µg plant−1); copper concentration in roots (C.C.R.—mg kg−1); copper content in roots (C.C.R.*—µg plant−1); copper concentration in whole plant (C.C.W.P.—mg kg−1); copper content in whole plant (C.C.W.P.*—µg plant−1) and translocation index (T.I).

  Variable Regression model Equations R 2 ANOVA
F p
Table 2 A Linear y = − 0.0253x + 19.19 0.337 3.01 0.03
Table 4 C.C.S. Linear y = − 0.1662x + 41.97 0.215 5.20 0.002
Table 4 C.C.S.* Linear y = − 0.6575x + 148.97 0.263 3.39 0.018
Table 4 C.C.R. Linear y = 0.9691x + 44.38 0.852 31.92 0.000
Table 4 C.C.R.* Linear y = 2.8347x + 38.14 0.894 5.90 0.001
Table 4 C.C.W.P. Linear y = 1.8763x +116.27 0.666 3.11 0.026
Table 4 C.C.W.P.* Linear y = 2.1771x + 187.11 0.742 3.02 0.029
Table 4 T.I. Linear y = − 0.0032x + 0.58 0.788 14.69 0.000

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lima, L.R., Silva, H.F., Brignoni, A.S. et al. Characterization of biomass sorghum for copper phytoremediation: photosynthetic response and possibility as a bioenergy feedstock from contaminated land. Physiol Mol Biol Plants 25, 433–441 (2019). https://doi.org/10.1007/s12298-018-00638-0

Download citation

Keywords

  • Bioenergy
  • Environmental protection
  • Toxic metals
  • Plant production
  • Clean technology
  • Photosynthesis