Skip to main content

A novel Trichoderma fusant for enhancing nutritional value and defence activity in chickpea

Abstract

In recent years, due to the rise in food consumption, much of the attention has been focused to increase the yield of the agricultural crops which resulted in compromised nutritional quality. Efforts have to be undertaken to enhance the nutritional attributes of legumes, cereals and staple food crops by increasing amino acids and mineral content. In the present study, we evaluated a protoplast fusant (H. lixii MTCC 5659) for its ability to enhance nutritional value and defence activity in chickpea. Essential amino acids; methionine (9.82 mg kg−1 dw), cysteine (2.61 mg kg−1 dw), glycine (11.34 mg kg−1 dw), valine (9.26 mg kg−1 dw), and non-essential amino acids; aspartic acid (39.19 mg kg−1 dw) and serine (17.53 mg kg−1 dw) were significantly higher in seeds of fusant inoculated chickpea. Fusant significantly improved accumulation of mineral nutrients i.e. Cu (157.73 mg kg−1 dw), Co (0.06 mg kg−1 dw), Ni (1.85 mg kg−1 dw), Zn (157.73 mg kg−1 dw) and S (16.29 mg kg−1 dw) in seeds. Biocontrol and defence activities of chickpea increased from 20 to 35% in fusant inoculated plants suggesting its potential to ameliorate biotic stress. To the best of our knowledge, this is the first report of an increase in amino acids and mineral content of chickpea by fusant inoculation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abeygunawardena DVW, Wood RKS (1957) Factors affecting the germination of scleotia and mycelial growth of Sclerotium rolfsii. Trans Br Mycol Soc 40:221–231

    Article  Google Scholar 

  2. Ahmed ME, Fatma NT (2007) Intra-strain crossing in Trichoderma harzianum via protoplast fusion to enhance chitinase productivity and biocontrol activity. Arab J Biotech 10(233):240

    Google Scholar 

  3. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  Article  PubMed  Google Scholar 

  4. Bidlingmeyer BA, Cohen SA, Tarvin TL (1984) Rapid analysis of amino acids using pre-column derivatization. J Chromatogr 336:93–104

    CAS  Article  PubMed  Google Scholar 

  5. Brotman Y et al (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Path 9:e1003221. https://doi.org/10.1371/journal.ppat.1003221

    CAS  Article  Google Scholar 

  6. Contreras-Cornejo HA, Macias-Rodriguez L, Del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiw036

    PubMed  Google Scholar 

  7. de Santiago A, Quintero JM, Aviles M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342:97–104. https://doi.org/10.1007/s11104-010-0670-1

    CAS  Article  Google Scholar 

  8. Dicko MH, Gruppen H, Barro C, Traore AS, van Berkel WJ, Voragen AG (2005) Impact of phenolic compounds and related enzymes in sorghum varieties for resistance and susceptibility to biotic and abiotic stresses. J Chem Ecol 31:2671–2688. https://doi.org/10.1007/s10886-005-7619-5

    CAS  Article  PubMed  Google Scholar 

  9. Dwivedi S et al (2010) Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma 245:113–124. https://doi.org/10.1007/s00709-010-0151-7

    CAS  Article  PubMed  Google Scholar 

  10. Fahmi A, Al-Talhi AD, Hassan MM (2012) Protoplast fusion enhances antagonistic activity in Trichoderma spp. Nat Sci 10:120–126

    Google Scholar 

  11. Gegios A et al (2010) Children consuming cassava as a staple food are at risk for inadequate zinc, iron, and vitamin A intake. Plant Foods Hum Nut 65:64–70. https://doi.org/10.1007/s11130-010-0157-5

    CAS  Article  Google Scholar 

  12. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    CAS  Article  PubMed  Google Scholar 

  13. Hanson LE, Howell CR (2002) Biocontrol efficacy and other characteristics of protoplast fusants between Trichoderma koningii and T. virens. Mycol Res 106:321–328

    Article  Google Scholar 

  14. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Article  PubMed  Google Scholar 

  15. Hefferon KL (2015) Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci 16:3895–3914. https://doi.org/10.3390/ijms16023895

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Jackson ML (1967) Soil chemical analysis. Prentice-Hall of India Pvt. Ltd, New Delhi

    Google Scholar 

  17. Kowsari M, Motallebi M, Zamani RM (2014) Construction of new GFP-tagged fusants for Trichoderma harzianum with enhanced biocontrol activity. J Plant Prot Res 54:122–131

    CAS  Article  Google Scholar 

  18. Lamdan NL, Shalaby S, Ziv T, Kenerley CM, Horwitz BA (2015) Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Mol Cell Proteomics 14:1054–1063. https://doi.org/10.1074/mcp.M114.046607

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Lavania M, Chauhan PS, Chauhan SV, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368. https://doi.org/10.1007/s00284-005-5578-2

    CAS  Article  PubMed  Google Scholar 

  20. Mallick CP, Singh MB (1980) Plant enzymology and histoenzymology, vol 286. Kalyani Publishers, New Delhi

    Google Scholar 

  21. Mehetre S, Mukherjee P (2015) Trichoderma improves nutrient use efficiency in crop plants. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer India, New Delhi, pp 173–180. https://doi.org/10.1007/978-81-322-2169-2_11

    Chapter  Google Scholar 

  22. Mishra A, Nautiyal CS (2009) Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuel-spiked soil amended with Trichoderma ressei using sole-carbon-source utilization profiles. World J Microbiol Biotechnol 25:1175–1180. https://doi.org/10.1007/s11274-009-9998-1

    CAS  Article  Google Scholar 

  23. Mishra A, Nautiyal C (2014) Novel recombinant strain of trichoderma useful for enhancing nutritional value and growth of plants. US 20140308748 A1

  24. Mishra BK, Mishra RK, Mishra RC, Tiwari AK, Yadav RS, Dikshit A (2011) Biocontrol efficacy of Trichoderma viride isolates against fungal plant pathogens causing disease in Vigna radiate L. Arch App Sci Res 3:361–369

    CAS  Google Scholar 

  25. Mukherjee PK, Nautiyal CS, Mukhopadhyay AN (2008) Molecular mechanisms of biocontrol by Trichoderma spp. In: Molecular mechanisms of plant and microbe coexistence, pp 243–262

  26. Munees A, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  27. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  28. Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39. https://doi.org/10.1016/j.envexpbot.2013.09.014

    CAS  Article  Google Scholar 

  29. Ojaghian MR, Wang L, Cui ZQ, Yang CL, Tao ZY, Xie GL (2014) Antifungal and SAR potential of crude extracts derived from neem and ginger against storage carrot rot caused by Sclerotinia sclerotiorum. Ind Crop Prod 55:130–139. https://doi.org/10.1016/j.indcrop.2014.02.012

    CAS  Article  Google Scholar 

  30. Pathan AK, Bond J, Gaskin RE (2008) Sample preparation for scanning electron microscopy of plant surfaces—horses for courses. Micron 39:1049–1061

    CAS  Article  PubMed  Google Scholar 

  31. Patil NS, Patil SM, Govindwar SP, Jadhav JP (2015) Molecular characterization of intergeneric hybrid between Aspergillus oryzae and Trichoderma harzianum by protoplast fusion. J Appl Microbiol 118:390–398. https://doi.org/10.1111/jam.12711

    CAS  Article  PubMed  Google Scholar 

  32. Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  33. Saxena A, Raghuwanshi R, Singh HB (2015) Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L. J Basic Microbiol 55:195–206. https://doi.org/10.1002/jobm.201400317

    CAS  Article  PubMed  Google Scholar 

  34. Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40. https://doi.org/10.1016/j.micres.2012.07.001

    CAS  Article  PubMed  Google Scholar 

  35. Tripathi P, Singh PC, Mishra A, Tripathi RD, Nautiyal CS (2015) Trichoderma inoculation augments grain amino acids and mineral nutrients by modulating arsenic speciation and accumulation in chickpea (Cicer arietinum L.). Ecotoxicol Environ Saf 117:72–80. https://doi.org/10.1016/j.ecoenv.2014.10.027

    CAS  Article  PubMed  Google Scholar 

  36. Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37. https://doi.org/10.1016/j.soilbio.2013.12.001

    CAS  Article  Google Scholar 

  37. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Article  Google Scholar 

  38. Yadav et al (2017) Compatible rhizosphere-competent microbial consortium adds value to the nutritional quality in edible parts of chickpea. J Agric Food Chem 65:6122–6130

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgement

Work was supported by Council of Scientific and Industrial Research Grant BSC101, New Delhi, India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aradhana Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

. Effect of Trichoderma parental strains and its fusant inoculation on chickpea plant growth promotion (TIFF 1439 kb)

Supplementary Fig. S2.

Biocontrol efficacy of parents and fusant Trichoderma spp. against S. rolfsii (a) control (b) with fusant (c) with parent1 (d) with parent 2 (TIFF 753 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Nautiyal, C.S. A novel Trichoderma fusant for enhancing nutritional value and defence activity in chickpea. Physiol Mol Biol Plants 24, 411–422 (2018). https://doi.org/10.1007/s12298-017-0500-5

Download citation

Keywords

  • Protoplast fusant
  • Trichoderma
  • Amino acids
  • Nutritional value
  • Biocontrol