Skip to main content

Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions

Abstract

Plants are confronted with a variety of environmenmtal stresses resulting in enhanced production of ROS. Plants require a threshold level of ROS for vital functions and any change in their concentration alters the entire physiology of plant. Delicate balance of ROS is maintained by an efficient functioning of intriguing indigenous defence system called antioxidant system comprising enzymatic and non enzymatic components. Down regulation of antioxidant system leads to ROS induced oxidative stress causing damage to important cellular structures and hence anomalies in metabolism. Proper mineral nutrition, in addition to other agricultural practices, forms an important part for growth and hence the yield. Potassium (K) is a key macro-element regulating growth and development through alterations in physiological and biochemical attributes. K has been reported to result into accumulation of osmolytes and augmentation of antioxidant components in the plants exposed to water and salt stress. In the present review an effort has been made to revisit the old findings and the current advances in research regarding the role of optimal, suboptimal and deficient K soil status on growth under normal and stressful conditions. Effect of K deficiency and sufficiency is discussed and the information about the K mediated antioxidant regulation and plant response is highlighted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

ROS:

Reactive oxygen species

PCD:

Programmed cell death

ABA:

Abscisic acid

SAR:

Sodium adsorption ratio

ESP:

Exchangeable sodium percentage

EC:

Electrical conductivity

PSII:

Photosystem II

HKT:

High affinity potassium transporter

SOS:

Salt overly sensitive

QTL:

Quantitative trait loci

H2O2 :

Hydrogen peroxide

O2 :

Superoxide ion

1O2 :

Singlet oxygen

O2 2− :

Peroxide

O2H:

Perhydroxyl radical

OH :

Hydroxyl radical

RO :

Alkoxy radicals

RNS:

Reactive nitrogen species

NO:

Nitric oxide

NO2 :

Nitric dioxide

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

APX:

Ascorbate peroxidase

MDHAR:

Monodehydroascorbate reductase

DHAR:

Dehydroascorbate reductase

GR:

Glutathione reductase

GST:

Glutathione-S-transferase

AsA:

Ascorbic acid

MDHA:

Monodehydroascorbate; oxidised ascorbate

GSH:

Reduced glutathione

GSSG:

Glutathione disulphide; oxidised glutathione

PAL:

Phenylalanine ammonia lyase

AKT:

Arabidopsis shaker type

CNGC:

Cyclic nucleotide gated channel

KUP/HAK:

High affinity potassium transporter

NSCC:

Non selective cation channels

NHX:

Sodium proton exchanger

TPK1:

Tonoplast two pore K+ type channel

GORK:

Guard cell outward-rectifying K+ channel

SKOR:

Stelar K+ outward-rectifying channel

HPODEs:

Hydroperoxy octadecadienoates

References

  1. Agarwal RM, Pandey R, Gupta S (1999) Certain aspects of water stress induced changes and tolerance mechanisms in plants. J Indian Bot Soc 78:255–269

    Google Scholar 

  2. Agarwal RM, Tomar NS, Jatav KS, Sharma GL (2009) Potassium induced changes in flowering plants. In: Flower Retrospect and Prospect (Professsor Vishwambhar Puri Birth Centenary Volume). SR Scientific Publication, Delhi, pp 158-186.

  3. Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    CAS  PubMed  Article  Google Scholar 

  4. Ahanger MA, Agarwal RM, Tomar NS, Shrivastava M (2015) Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). J Plant Int 10:211–223

    Google Scholar 

  5. Ahanger MA, Agarwal RM (2017a) Potassium improves antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.). Protoplasma. 254:1471–1486. doi:10.1007/s00709-016-1037-0

    CAS  PubMed  Article  Google Scholar 

  6. Ahanger MA, Agarwal RM (2017b) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    CAS  PubMed  Article  Google Scholar 

  7. Ahmad I, Maathuis FJM (2014) Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. J Plant Physiol 171:708–714

    CAS  PubMed  Article  Google Scholar 

  8. Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    CAS  PubMed  Article  Google Scholar 

  9. Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49–60

    CAS  PubMed  Article  Google Scholar 

  10. Ahmed IM, Nadira UA, Bibi N, Cao F, He X, Zhang G, Wu F (2015) Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environ Exp Bot 111:1–12

    CAS  Article  Google Scholar 

  11. Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2014) Alleviation of osmotic stress in Brassica napus, B. campestris and B. juncea by ascorbic acid application. Biol Plant 58:697–708

    CAS  Article  Google Scholar 

  12. Anjaneyulu E, Reddy PS, Sunita MS, Kishor PBK, Meriga B (2014) Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H+-pyrophosphatase gene (SbVPPase) from Sorghum bicolor. J Plant Physiol 171:789–798

    CAS  PubMed  Article  Google Scholar 

  13. Anschutz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687

    CAS  PubMed  Article  Google Scholar 

  14. Arora A, Byrem TM, Nari MG, Strasburg GM (2000) Modulation of liposomal membranes fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373:102–109

    CAS  PubMed  Article  Google Scholar 

  15. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    CAS  PubMed  Article  Google Scholar 

  17. Attia H, Karray N, Ellili A, Msilini N, Lachaal M (2009) Sodium transport in Basil. Acta Physiol Plant 31:1045–1051

    CAS  Article  Google Scholar 

  18. Bacha H, Rodenas R, Lopez-Gomez E, Garcia-Legaz MF, Nieves-Cordones M, Rivero RM, Martinez V, Angeles Botella A (2015) High Ca2+ reverts the repression of high-affinity K+ uptake produced by Na+ in Solanum lycopersicum L. (var. microtom) plants. J Plant Physiol 180:72–79

    CAS  PubMed  Article  Google Scholar 

  19. Baisakh N, Rao MNR, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Loisel. Plant Biotechnol J 10:453–464

    CAS  PubMed  Article  Google Scholar 

  20. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    CAS  PubMed  Article  Google Scholar 

  21. Benlloch-Gonzalez M, Romera J, Cristescu S, Harren F, Fournier JM, Benlloch M (2010) K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants. J Exp Bot 61:1139–1145

    CAS  PubMed  Article  Google Scholar 

  22. Blum A (1996) Crop response to drought and the interpretation of adaptation. J Plant Growth Regul 20:135–148

    CAS  Article  Google Scholar 

  23. Britto DT, Ebrahimi-Ardebili S, Hamam AM, Coskun D, Kronzucker HJ (2010) 42 K analysis of sodium-induced potassium efflux in barley: mechanism and relevance to salt tolerance. New Phytol 186:373–384

    CAS  PubMed  Article  Google Scholar 

  24. Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    CAS  Article  Google Scholar 

  25. Cao F, Cai Y, Liu L, Zhang M, He X, Zhang G, Wu F (2015) Differences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypes. Plant Growth Regul 75:715–723

    CAS  Article  Google Scholar 

  26. Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Chamorro D, Parra A, Moreno JM (2016) Reproductive output, seed anatomy and germination under water stress in the seeder Cistus ladanifer subjected to experimental drought. Environ Exp Bot 123:59–67

    Article  Google Scholar 

  28. Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333

    CAS  PubMed  Article  Google Scholar 

  29. Cherel I, Lefoulon C, Boeglin M, Sentenac H (2014) Molecular mechanisms involved in plant adaptation to low K+ availability. J Exp Bot 65:833–848

    CAS  PubMed  Article  Google Scholar 

  30. Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    CAS  PubMed  Article  Google Scholar 

  31. Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18

    CAS  PubMed  Article  Google Scholar 

  32. del-Rio LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    CAS  PubMed  Article  Google Scholar 

  33. Demidchik V, Straltsova V, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270

    CAS  PubMed  Article  Google Scholar 

  34. Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochem 71:338–350

    CAS  Article  Google Scholar 

  35. El-Sayed OM, El-Gammal OHM, Salama ASM (2014) Effect of ascorbic acid, proline and jasmonic acid foliar spraying on fruit set and yield of Manzanillo olive trees under salt stress. Sci Hortic 176:32–37

    CAS  Article  Google Scholar 

  36. Erel R, Yermiyahu U, Ben-Gal A, Dag A, Shapira O, Schwartz A (2015) Modification of non-stomatal limitation and photoprotection due to K and Na nutrition of olive trees. J Plant Physiol 177:1–10

    CAS  PubMed  Article  Google Scholar 

  37. Eskling M, Arvidsson PO, Akerlund HE (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100:806–816

    CAS  Article  Google Scholar 

  38. Fan W, Deng G, Wang H, Zhang H, Zhang P (2015) Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas). Physiol Plant 154:560–571

    CAS  PubMed  Article  Google Scholar 

  39. Fatma M, Asgher M, Masood A, Khan NA (2014) Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot 107:55–63

    CAS  Article  Google Scholar 

  40. Fayaz KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13(1):45–55

    Google Scholar 

  41. Flores-Caceres ML, Hattab S, Hattab S, Boussetta H, Banni M, Hernandez LE (2015) Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants. Plant Sci 233:165–173

    CAS  PubMed  Article  Google Scholar 

  42. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Fracasso A, Trindade L, Amaducci S (2016) Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. J Plant Physiol 190:1–14

    CAS  PubMed  Article  Google Scholar 

  44. Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443

    CAS  PubMed  Article  Google Scholar 

  45. Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:8–96

    Article  Google Scholar 

  46. Ghanta S, Datta R, Bhattacharyya D, Sinha R, Kumar D, Hazra S, Mazumdar AB, Chattopadhyay S (2014) Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress. J Plant Physiol 171:940–950

    CAS  PubMed  Article  Google Scholar 

  47. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Article  Google Scholar 

  48. Gimeno V, Diaz-Lopez L, Simon-Grao S, Martinez V, Martinez-Nicolas JJ, Garcia-Sanchez F (2014) Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions. Plant Physiol Biochem 83:308–315

    CAS  PubMed  Article  Google Scholar 

  49. Giorgi A, Mingozzi M, Madeo M, Speranza G, Cocucci M (2009) Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.). Food Chem 114:204–211

    CAS  Article  Google Scholar 

  50. Gols R (2014) Direct and indirect chemical defences against insects in a multitrophic framework. Plant, Cell Environ 37:1741–1752

    Article  Google Scholar 

  51. Gonzalez A, Martin I, Ayerbe L (2008) Yield and osmotic adjustment capacity of barley under terminal water stress conditions. J Agron Crop Sci 194:81–91

    Article  Google Scholar 

  52. Goufo P, Pereira J, Moutinho-Pereira J, Correia CM, Figueiredoc N, Carranca C, Rosa EAS, Trindade H (2014) Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ Exp Bot 99:28–37

    CAS  Article  Google Scholar 

  53. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1–11

    Article  CAS  Google Scholar 

  54. Hernandez M, Fernandez-Garcia N, Garcia-Garma J, Rubio-Asensio JS, Rubio F, Olmos E (2012) Potassium starvation induces oxidative stress in Solanum lycopersicum L. roots. J Plant Physiol 169:1366–1374

    CAS  PubMed  Article  Google Scholar 

  55. Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in Glycophytes. Environ Exp Bot 124:39–63

    CAS  Article  Google Scholar 

  56. Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267

    CAS  PubMed  Article  Google Scholar 

  57. Ibrahim MH, Jaafar HZE, Karimi E, Ghasemzadeh A (2012) Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian herb kacip fatimah (Labisia pumila Benth) exposed to potassium fertilization under greenhouse conditions. Int J Mol Sci 13:15321–15342

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Iqbal N, Shahid Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    CAS  PubMed  Article  Google Scholar 

  59. Jatav KS, Agarwal RM, Tomar NS, Tyagi SR (2014) Nitrogen metabolism, growth and yield responses of wheat (Triticum aestivum L.) to restricted water supply and varying potassium treatments. J Indian Bot Soc 93:177–189

    Google Scholar 

  60. Kagan VE, Tyurina YY (1998) Recycling and redox cycling of phenolic antioxidants. Ann N Y Acad Sci. doi:10.1111/j.1749-6632.1998.tb09921

    PubMed  Google Scholar 

  61. Kaiser WM (1982) Correlation between changes in photosynthetic activity and changes in total protoplast volume in leaf tissue from hygro, meso and xerophytes under osmotic stress. Planta 154:538–545

    CAS  PubMed  Article  Google Scholar 

  62. Kanai S, Moghaieb RE, El-Shemy HA, Panigrahid R, Mohapatra PK, Ito J, Nguyen NT, Saneoka H, Fujita K (2011) Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci 180:368–374

    CAS  PubMed  Article  Google Scholar 

  63. Karimi S, Yadollahi A, Arzani K, Imani A, Aghaalikhani M (2015) Gas-exchange response of almond genotypes to water stress. Photosynthetica 53:29–34

    CAS  Article  Google Scholar 

  64. Khan NA, Nazar R, Anjum NA (2009) Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hortic 122:455–460

    CAS  Article  Google Scholar 

  65. Khan SH, Ahmad N, Ahmad F, Kumar R (2010) Naturally occurring organic osmolytes: from cell physiology to disease prevention. Life 62:891–895

    CAS  PubMed  Google Scholar 

  66. Khan MIR, Asgher M, Fatma M, Per TS, Khan NA (2015) Drought stress vis-a-vis plant functions in the era of climate change. Clim Change Environ Sustain 3:13–25

    Article  Google Scholar 

  67. Kishor PBK, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue?. Plant Cell Environ 37(2):300–311

    Article  CAS  Google Scholar 

  68. Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy metal accumulation by epidermal glands of water lily (Nymphaeceaea). Planta 212:323–331

    CAS  PubMed  Article  Google Scholar 

  69. Li DM, Nie YX, Zhang J, Yin JS, Li Q, Wang XJ, Bai JG (2013) Ferulic acid pretreatment enhances dehydration-stress tolerance of cucumber seedlings. Biol Plant 57:711–717

    CAS  Article  Google Scholar 

  70. Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ (2012) Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem 135:1065–1070

    CAS  PubMed  Article  Google Scholar 

  71. Liu Y, Yu L, Tong J, Ding J, Wang R, Lu Y, Xiao Y (2013) Tiller number is altered in the ascorbic acid-deficient rice suppressed for l-galactono-1,4-lactone dehydrogenase. J Plant Physiol 170:389–396

    CAS  PubMed  Article  Google Scholar 

  72. Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    CAS  PubMed  Article  Google Scholar 

  74. Martineau E, Domec JC, Bosc A, Denoroy P, Fandino VA, Jrb JL, Jordan-Meille L (2017) The effects of potassium nutrition on water use in field-grown maize (Zea mays L.). Environ Exp Bot 134:62–71

    CAS  Article  Google Scholar 

  75. Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    CAS  PubMed  Article  Google Scholar 

  76. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Article  Google Scholar 

  77. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    CAS  PubMed  Article  Google Scholar 

  78. Miyaji T, Kuromori T, Takeuchi Y, Yamaji N, Yokosho K, Shimazawa A, Sugimoto E, Omote H, Ma JF, Shinozaki K, Moriyama Y (2015) AtPHT4; 4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat Commun 6:5928. doi:10.1038/ncomms6928

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Miyake C (2010) Alternative electron flows (Water–Water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol 51:1951–1963

    CAS  PubMed  Article  Google Scholar 

  80. Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosyn Res 86:459–474

    CAS  PubMed  Article  Google Scholar 

  81. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:581–651

    Article  CAS  Google Scholar 

  82. Nio SA, Cawthray GR, Wade LJ, Colmer TD (2011) Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiol Biochem 49:1126–1137

    CAS  PubMed  Article  Google Scholar 

  83. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  PubMed  Article  Google Scholar 

  84. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant, Cell Environ 35:454–484

    CAS  Article  Google Scholar 

  85. Oh MM, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166:180–191

    CAS  PubMed  Article  Google Scholar 

  86. Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    CAS  PubMed  Article  Google Scholar 

  87. Oukarroum A, Bussotti F, Goltsev V, Kalaji HM (2015) Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ Exp Bot 109:80–88

    CAS  Article  Google Scholar 

  88. Ozcan H, Turan MA, Koc O, Cikili Y, Taban S (2000) Growth and variations in proline, sodium, chloride, phosphorus and potassium concentrations of chickpea varieties under salinity stress. Turk J Agric For 24:649–654

    CAS  Google Scholar 

  89. Pandey R, Agarwal RM, Jeevaratnam K, Sharma GL (2004) Osmotic stress-induced alterations in rice (Oryza sativa L.) and recovery on stress release. Plant Growth Regul 42:79–87

    CAS  Article  Google Scholar 

  90. Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83

    Article  Google Scholar 

  91. Puniran-Hartley N, Hartley J, Shabala L, Shabala S (2014) Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: in planta evidence for cross-tolerance. Plant Physiol Biochem 83:32–39

    CAS  PubMed  Article  Google Scholar 

  92. Purohit S, Laloraya MM, Bharti S, Nozzolillo C (1992) Effect of phenolic compounds on ABA-induced Changes in K + concentration of guard cells and in epidermal diffusive resistance. J Exp Bot 43(246):103–110

    CAS  Article  Google Scholar 

  93. Qasim M, Ashraf M (2006) Time course of ion accumulation and its relationship with the salt tolerance of two genetically diverse lines of canola (Brassica napus L.). Pak J Bot 38:663–672

    Google Scholar 

  94. Qiao W, Li C, Fan LM (2014) Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environ Exp Bot 100:84–93

    CAS  Article  Google Scholar 

  95. Rahil MH, Qanadillo A (2015) Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agric Water Manag 148:10–15

    Article  Google Scholar 

  96. Ramegowda V, Senthil-kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    CAS  PubMed  Article  Google Scholar 

  97. Rasool S, Ahmad A, Siddiqi TO (2012) Differential response of chickpea genotypes under salt stress. J Funct Environ Bot 2:59–64

    Article  Google Scholar 

  98. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  99. Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    CAS  PubMed  Article  Google Scholar 

  100. Sairam RK, Tygai A (2004) Physiology and molecular biology of salinity stress tolerant in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  101. Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and pro-oxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–80

    CAS  PubMed  Article  Google Scholar 

  102. Saleh AM, Madany MMY (2015) Coumarin pretreatment alleviates salinity stress in wheat seedlings. Plant Physiol Biochem 88:27–35

    CAS  PubMed  Article  Google Scholar 

  103. Sano T, Becker D, Ivashikina N, Wegner LH, Zimmermann U, Roelfsema MRG, Nagata T, Hedrich R (2007) Plant cells must pass a K+ threshold to re-enter the cell cycle. Plant J 50:401–413

    CAS  PubMed  Article  Google Scholar 

  104. Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151:257–279

    CAS  PubMed  Article  Google Scholar 

  105. Shabala S, Bose J, Fuglsang AT, Pottosin I (2016) On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. J Exp Bot 67(4):1015–1031

    CAS  PubMed  Article  Google Scholar 

  106. Shafiq S, Akram NA, Ashraf M (2015) Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Sci Hortic 185:68–75

    CAS  Article  Google Scholar 

  107. Shan C, Zhao X (2014) Effects of lanthanum on the ascorbate and glutathione metabolism of Vigna radiata seedlings under salt stress. Biol Plant 58:595–599

    CAS  Article  Google Scholar 

  108. Sharma GL, Agarwal RM, Singh RP (2006) Potassium induced changes in certain aspects of nitrogen metabolism in chickpea (Cicer arietinum L.). Physiol Mol Biol Plants 12:157–162

    CAS  Google Scholar 

  109. Shrivastava M, Ahanger MA, Agarwal RM (2016) Improved growth of Trigonella foenum-graecum L. with potassium supplementation involves physiological and biochemical implications. J Funct Environ Bot 6(2):84–101

    Article  Google Scholar 

  110. Singh N, Kuhad MS (2005) Role of potassium in alleviating the effect of water stress on yield and seed quality in chickpea (Cicer arietinum L.). Bull Natl Inst Ecol 15:219–225

    Google Scholar 

  111. Song ZZ, Yang Y, Ma RJ, Xu JL, Yu ML (2015) Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Biol Plant 59:65–73

    CAS  Article  Google Scholar 

  112. Sugiyama T, Goto Y (1966) Physiological role of potassium in the carbohydrate metabolism of plants (part II). Soil Sci Plant Nutr 12(6):19–23

    Article  Google Scholar 

  113. Tiwari HS, Agarwal RM, Bhatt RK (1998) Photosynthesis, stomatal resistance and related characteristics, as influenced by potassium under normal water supply and water stress conditions in rice (Oryza sativa L.). Indian J Plant Physiol 3:314–316

    Google Scholar 

  114. Tomar NS, Agarwal RM (2013) Influence of treatment of Jatropha curcas L. leachates and potassium on growth and phytochemical constituents of wheat (Triticum aestivum L.). Am J Plant Sci 4:1134–1150

    Article  CAS  Google Scholar 

  115. Tomar NS, Sharma M, Agarwal RM (2015) Phytochemical analysis of Jatropha curcas L. during different seasons and developmental stages and seedling growth of wheat (Triticum aestivum L.) as affected by extracts/leachates of Jatropha curcas L. Physiol Mol Biol Plant 21:83–92

    CAS  Article  Google Scholar 

  116. Touchette BW, Smith GA, Rhodes KL, Poole M (2009) Tolerance and avoidance: two contrasting physiological responses to salt stress in mature marsh halophytes Juncus roemerianus Scheele and Spartina alterniflora Loisel. J Exp Mar Bio Ecol 380:106–112

    CAS  Article  Google Scholar 

  117. Turkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  CAS  Google Scholar 

  118. Tuteja N, Ahmad P, Panda BB, Tuteja R (2009) Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res 681:134–149

    CAS  PubMed  Article  Google Scholar 

  119. Uzilday B, Turkan I, Ozgur R, Sekmen AH (2014) Strategies of ROS regulation and antioxidant defense during transition from C3 to C4 photosynthesis in the genus Flaveria under PEG-induced osmotic stress. J Plant Physiol 171:65–75

    CAS  PubMed  Article  Google Scholar 

  120. Vadez V (2014) Root hydraulics: the forgotten side of roots in drought adaptation. Field Crops Res 165:15–24

    Article  Google Scholar 

  121. Vijayalakshmi D, Ashok SK, Raveendran M (2014) Screening for salinity stress tolerance in rice and finger millet genotypes using shoot Na+/K+ ratio and leaf carbohydrate contents as key physiological traits. Indian J Plant Physiol 19:156–160

    Article  Google Scholar 

  122. Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Weng XY, Zheng CJ, Xu HX, Sun JY (2007) Characteristics of photosynthesis and functions of the water–water cycle in rice (Oryza sativa) leaves in response to potassium deficiency. Physiol Plant 131:614–621

    CAS  PubMed  Article  Google Scholar 

  124. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    CAS  PubMed  Article  Google Scholar 

  125. Wiesner R, Suzuki H, Walther M, Yamamoto S, Kuhn H (2003) Suicidal inactivation of the rabbit 15-lipoxygenase by 15 s-HpETE is paralleled by covalent modification of active site peptides. Free Radic Biol Med 34(3):304–315

    CAS  PubMed  Article  Google Scholar 

  126. Willekens H, Villarroel R, Van Montagu M, Inze D, Van Camp W (1994) Molecular identification of catalases from Nicotiana plumbaginifolia L. FEBS Lett 352:79–83

    CAS  PubMed  Article  Google Scholar 

  127. Wu H, Shabala L, Barry K, Zhou M, Shabala S (2013) Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Physiol Plant 149:515–527

    CAS  PubMed  Article  Google Scholar 

  128. Xiao-guang W, Xin-hua Z, Chun-ji J, Chun-hong L, Shan C, Di W, Yan-qiu C, Hai-qiu Y, Chun-yan W (2015) Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max L. Merr). J Integr Agric 14:856–863

    Article  CAS  Google Scholar 

  129. Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  130. Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY (2012) Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol 54(10):703–712

    CAS  PubMed  Article  Google Scholar 

  131. Yao Y, You J, Ou Y, Ma J, Wu X, Xu G (2015) Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds. Plant Physiol Biochem 90:23–31

    CAS  PubMed  Article  Google Scholar 

  132. Zain NAM, Ismail MR (2016) Effects of potassium rates and types on growth, leaf gas exchange and biochemical changes in rice (Oryza sativa) planted under cyclic water stress. Agric Water Manag 164:83–90

    Article  Google Scholar 

  133. Zheng Y, Jia A, Ning T, Xu J, Li Z, Jiang G (2008) Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J Plant Physiol 165:1455–1465

    CAS  PubMed  Article  Google Scholar 

  134. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Article  Google Scholar 

  135. Zorb C, Senbayram M, Peiter E (2014) Potassium in agriculture—status and perspectives. J Plant Physiol 171:656–669

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Head, School of Studies in Botany, Jiwaji University, Gwalior, MP for providing necessary facilities and thanks to Dr Shahid Umar, Hamdard University for sharing some of the literature. First author is highly thankful to Jiwaji University, Gwalior and MPCST, Bhopal for financial assistance. Funding was provided by Jiwaji University (Grant No. F/DEV/2013-14/33) and MPCST, Bhopal (Grant No. 1466/CST/R&D(BS)/2015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. M. Agarwal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahanger, M.A., Tomar, N.S., Tittal, M. et al. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23, 731–744 (2017). https://doi.org/10.1007/s12298-017-0462-7

Download citation

Keywords

  • ROS
  • Antioxidants
  • Osmolytes
  • Polyphenols
  • Potassium
  • Stress amelioration