Skip to main content
Log in

A novel GRAS transcription factor, ZmGRAS20, regulates starch biosynthesis in rice endosperm

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Starch occupies the maximal component of cereal grains and is pivotal for maize yield and quality. However, the regulatory mechanism of starch synthesis is still poorly understand. In this study, a GRAS transcription factor, ZmGRAS20, was isolated from maize inbred line B73 based on transcriptome sequencing. Quantitative real-time PCR indicated that ZmGRAS20 is specifically expressed in maize endosperm. Transient expression of ZmGRAS20-green fluorescent protein fusion protein in tobacco cells showed a nucleus and membrane localization of the protein. Transactivation assay of ZmGRAS20 demonstrated that it has no transactivation activity in yeast cells. Overexpression of ZmGRAS20 led to a chalky region of ventral endosperm with decreased starch content and defective agronomic characters in transgenic seeds. Moreover, ZmGRAS20-overexpression plants had fewer fractions of long-branched starch chains. Further scanning electron microscopy observation of ZmGRAS20 transgenic seeds exhibited altered starch granules morphology compared with wide type plants. Taken together, these results suggested that ZmGRAS20 may function as a starch synthesis regulatory factor in rice endosperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashida K, Iida S, Yasui T (2009) Morphological, physical, and chemical properties of grain and flour from chalky rice mutants. Cereal Chem 86(2):225–231

    Article  CAS  Google Scholar 

  • Beck E, Ziegler P (1989) Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Biol Plant Mol Biol 128(40):95–117

    Article  Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218(5):683–692

    Article  CAS  PubMed  Google Scholar 

  • Bolle C, Koncz C, Chua NH (2000) PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev 14(10):1269–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brummell DA, Watson LM, Zhou J, McKenzie MJ, Hallett IC et al (2015) Overexpression of STARCH BRANCHING ENZYME II increases short-chain branching of amylopectin and alters the physicochemical properties of starch from potato tuber. BMC Biotechnol 15:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai RH, Zhao Y, Wang YF, Lin YX, Peng XJ et al (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue Org 119(3):565–577

    Article  CAS  Google Scholar 

  • Chen J, Yi Q, Cao Y, Wei B, Zheng LJ et al (2016) ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters. J Exp Bot 67(5):1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Craig J, Lloyd JR, Tomlinson K, Barber L, Edwards A et al (1998) Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. Plant Cell 10(3):413–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emes MJ, Bowsher CG, Hedley C, Burrell MM, Scrase-Field ES et al (2003) Starch synthesis and carbon partitioning in developing endosperm. J Exp Bot 54(382):569–575

    Article  CAS  PubMed  Google Scholar 

  • Fu FF, Xue HW (2010) Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154(2):927–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita N (2014) Starch biosynthesis in rice endosperm. Agri Biosci Monogr 4:1–18

    Article  Google Scholar 

  • Gamez-Arjona FM, Li J, Raynaud S, Baroja-Fernandez E, Munoz FJ et al (2011) Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch. Plant Biotechnol J 9(9):1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Gilbert GA, Spragg SP (1964) Iodimetric determination of amylose. In: Whister RL (ed) Methods in carbohydrate chemistry, vol IV. Academic Press, New York, pp 168–169

    Google Scholar 

  • Hao YJ, Song QX, Chen HW, Zou HF, Wei W et al (2010) Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta 232(5):1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J et al (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101(5):555–567

    Article  CAS  PubMed  Google Scholar 

  • Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147(2):342–347

    Article  CAS  Google Scholar 

  • Hizukuri S (1988) Recent advances in molecular structures of starch. J Appl Glycosci 35(3):185–198

    CAS  Google Scholar 

  • Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48(6):383–392

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Zeng BA, Zhao HN, Zhang M, Xie SJ et al (2012) Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize. J Integr Plant Biol 54(9):616–630

    Article  CAS  PubMed  Google Scholar 

  • Juliano BO (1971) A simplified assay for milled-rice amylose. Cereal Sci Today 16:334–360

    Google Scholar 

  • Juliano BO (1998) Varietal impact on rice quality. Cereal Foods World 43(4):207–222

    Google Scholar 

  • Keeling PL, Myers AM (2010) Biochemistry and genetics of starch synthesis. Annu Rev Food Sci Technol 1:271–303

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Lee SF, Kim OW, Kim DC (2000) Physicochemical characteristics of chalky kernels and their effects on sensory quality of cooked rice. Cereal Chem 77(3):376–379

    Article  CAS  Google Scholar 

  • Li GS, Wang DF, Yang RL, Logan K, Chen H et al (2014) Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proc Natl Acad Sci USA 111(21):7582–7587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YJ, Zhang QF (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23(8):540–547

    Article  CAS  PubMed  Google Scholar 

  • Lisle AJ, Martin M, Fitzgerald MA (2000) Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem 77(5):627–632

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Chen LN, Lii CY (1997) Correlations between the fine structure, physicochemical properties, and retrogradation of amylopectins from Taiwan rice varieties. Cereal Chem 74(1):34–39

    Article  CAS  Google Scholar 

  • Morley-Smith ER, Pike MJ, Findlay K, Koeckenberger W, Hill LM et al (2008) The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds. Plant Physiol 147(4):2121–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson O, Pan D (1995) Starch synthesis in maize endosperms. Ann Rev Plant Physiol Plant Mol Biol 46(1):475–496

    Article  CAS  Google Scholar 

  • Orman BA, Rajr S (2002) Comparison of near-infrared spectroscopy calibration methods for the prediction of protein, oil, and starch in maize grain. J Agric Food Chem 39(5):592–598

    Google Scholar 

  • Patindol J, Wang YJ (2003) Fine structures and physicochemical properties of starches from chalky and translucent rice kernels. J Agric Food Chem 51(9):2777–2784

    Article  CAS  PubMed  Google Scholar 

  • Perez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch Starke 62(8):389–420

    Article  CAS  Google Scholar 

  • Pfister B, Zeeman SC (2016) Formation of starch in plant cells. CMLS, Cell Mol Life Sci. doi:10.1007/s00018-016-2250-x

    Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18(1):111–119

    Article  CAS  PubMed  Google Scholar 

  • Qiao JF, Liu ZH, Deng SY, Ning HF, Yang XY et al (2011) Occurrence of perfect and imperfect grains of six japonica rice cultivars as affected by nitrogen fertilization. Plant Soil 349(1–2):191–202

    Article  CAS  Google Scholar 

  • Regina A, Rahman S, Li Z, Morell MK (2004) STARCH synthesis. In: Wrigley C, Corke H, Walker C (eds) Encyclopedia of grain science. Elsevier, Oxford, pp 224–232

  • Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M et al (2008) Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20(7):1833–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekhon RS, Lin HN, Childs KL, Hansey CN, Buell CR et al (2011) Genome-wide atlas of transcription during maize development. Plant J 66(4):553–563

    Article  CAS  PubMed  Google Scholar 

  • Sekhon RS, Briskine R, Hirsch CN, Myers CL, Springer NM et al (2013) Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS ONE 8(4):e61005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM (1999) Making starch. Curr Opin Plant Biol 2(3):223–229

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Kossmann J (2013) Starches-from current models to genetic engineering. Plant Biotechnol J 11(2):223–232

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S et al (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15(9):2076–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda Y, Hizukuri S, Juliano BO (1986) Purification and structure of amylose from rice starch. Carbohydr Res 148(2):299–308

    Article  CAS  Google Scholar 

  • Tetlow IJ (2011) Starch biosynthesis in developing seeds. Seed Sci Res 21(1):5–32

    Article  CAS  Google Scholar 

  • Tetlow IJ, Emes MJ (2014) A review of starch-branching enzymes and their role in amylopectin biosynthesis. IUBMB Life 66(8):546–558

    Article  CAS  PubMed  Google Scholar 

  • Tian ZX, Qian Q, Liu QQ, Yan MX, Liu XF et al (2009) Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA 106(51):21760–21765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukaguchi T, Iida Y (2008) Effects of assimilate supply and high temperature during grain-filling period on the occurrence of various types of chalky kernels in rice plants (Oryza sativa L.). Plant Prod Sci 11(2):203–210

    Article  Google Scholar 

  • Wang JH, Andersson-Gunneras S, Gaboreanu I, Hertzberg M, Tucker MR et al (2011) Reduced expression of the SHORT-ROOT gene increases the rates of growth and development in hybrid poplar and Arabidopsis. PLoS ONE 6(12):e28878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JC, Xu H, Zhu Y, Liu QQ, Cai XL (2013) OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot 64(11):3453–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    Article  CAS  PubMed  Google Scholar 

  • Zhang XL, Colleoni C, Ratushna V, Sirghle-Colleoni M, James MG et al (2004) Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa. Plant Mol Biol 54(6):865–879

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Myers AM, James MG (2005) Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. Plant Physiol 138(2):663–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Szydlowski N, Delvalle D, D’Hulst C, James MG et al (2008) Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis. BMC Plant Biol 8:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Iyer LM, Aravind L (2012) Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms. Bioinformatics 28(19):2407–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Chen J, Yi Q, Hu YF, Liu HM et al (2014) Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm. Plant Mol Biol 84(3):359–369

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhou YQ, Jiang HY, Li XY, Gan DF et al (2011) Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS ONE 6(12):e28488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Ma Q, Jin XL, Peng XJ, Liu JY et al (2014) A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol 55(6):1142–1156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Program on Key Basic Research Project (973 Program, No. 2014CB138204) and Genetically Modified Organisms Breeding Major Projects (2013ZX003-002). We would like to thank the members of the Key Laboratory of Crop Biology of Anhui province for their technical assistance in this study.

Authors’ contribution

YZ, QM and BC designed the research, HC conducted the molecular experiments, MZ performed the rice transformation, YC analyzed agronomic characters, detected starch content and analyzed the data, RC participated in the design of this study, YZ and HC drafted the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Huilin Cai and Yulong Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Chen, Y., Zhang, M. et al. A novel GRAS transcription factor, ZmGRAS20, regulates starch biosynthesis in rice endosperm. Physiol Mol Biol Plants 23, 143–154 (2017). https://doi.org/10.1007/s12298-016-0404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-016-0404-9

Keywords

Navigation