Skip to main content
Log in

Transcriptome differences between fiber-type and seed-type Cannabis sativa variety exposed to salinity

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The industrial hemp varieties ‘Yunma 5’ and ‘Bamahuoma,’ which demonstrate growth vigor and environmental adaptability, have been primarily cultivated in Yunnan and Guangxi, China, respectively, for fiber and seeds. The results of physiological measurements showed the phenotypic differences between the two varieties in response to salt stress. RNA-Seq analysis was first performed on leaves of both varieties sampled at four time intervals (0, 2, 4, 6 days) after treatment with salt (500 mM NaCl) We identified 220 co-up-regulated differentially expressed genes (DEGs) in the two varieties, while 26 up-regulated DEGs and 24 down-regulated DEGs were identified exclusively in the single varieties after 2 days of salt stress. Among the 220 DEGs, we identified 22 transcription factors, including key transcription factors involved in salt stress, such as MYB, NAC, GATA, and HSF. We applied gene expression profile analysis and found that ‘Yunma 5’ and ‘Bamahuoma’ have variety-specific pathways for resisting salt stress. The DEGs of ‘Yunma 5’ were enriched in spliceosome and amino acid metabolism genes, while the DEGs of ‘Bamahuoma’ were enriched in fatty acid metabolism, amino acid metabolism, and endoplasmic reticulum protein processing pathway. Although there were common DEGs, such as genes encoding cysteine protease and alpha/beta-hydrolase superfamily, the two varieties’ responses to salt stress impacted different metabolic pathways. The DEGs that were co-expressed in both varieties under stress may provide useful insights into the tolerance of cultivated hemp and other bast fiber crops to saline soil conditions. These transcriptomes also represent reference sequences for industrial hemp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

REC:

Relative electric conductivity

DEG:

Differentially expressed gene

qRT-PCR:

Quantitative real-time PCR

ABA:

Abscisic acid

KEGG:

The Kyoto Encyclopedia of Genes and Genomes database

FDR:

False discovery rate

References

  • Ahrazem O, Moraga AR, Mozos AT, Climen MFL, Cadenas AG, Gómez LG (2015) Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. Plant Sci 234:60–73

    Article  CAS  PubMed  Google Scholar 

  • An ML, Mou SL, Zhang XW, Zheng Z, Ye NH, Wang DS, Zhang W, Miao JL (2013) Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresour Technol 149:77–83

    Article  CAS  PubMed  Google Scholar 

  • Arent S, Pye VE, Henriksen A (2008) Structure and function of plant acyl-CoA oxidases. Plant Physiol Biochem 46:292–301

    Article  CAS  PubMed  Google Scholar 

  • Bakel HV, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:R102

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Chen AK, Han RH, Li DY, Ling LL, Luo HX, Tang SJ (2010) A comparison of two methods for electrical conductivity about plant leaves. J Guangdong Educ Inst 30:87–91

    Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Crespo JL, Daicho K, Ushimaru T, Hall MN (2001) The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276:34441–34444

    Article  CAS  PubMed  Google Scholar 

  • Dai F (1989) Origin, use and geographical distribution of hemp (Cannabis sativa L.) in China. J Southwest Teach Univ 3:114–119

    Google Scholar 

  • Dong W, Ai XH, Xu F, Quan TY, Liu SW, Xia GM (2012) Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene 511:38–45

    Article  CAS  PubMed  Google Scholar 

  • Ernst J, Nau GJ, Joseph ZB (2005) Clustering short time series gene expression data. Binformatics 21:i159–i168

    Article  CAS  Google Scholar 

  • He C, Shen G, Pasapula V, Luo J, Venkataramani S, Qiu X, Kuppu S, Kornyeyev D (2007) Ectopic expression of AtNHX1 in cotton (Gossypium hirsutum L.) increases proline content and enhances photosynthesis under salt stress conditions. J Cotton Sci 11(4):266–274

    CAS  Google Scholar 

  • Hilt W, Wolf DH (1992) Stress-induced proteolysis in yeast. Mol Microbiol 6:2437–2442

    Article  CAS  PubMed  Google Scholar 

  • Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin JP, Zhang H, Kong L, Gao G, Luo JC (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(D1):D1182–D1187

    Article  CAS  PubMed  Google Scholar 

  • Jones JT, Mullet JE (1995) A salt- and dehydration-inducible pea gene, Cyp15a, encodes a cell-wall protein with sequence similarity to cysteine protease. Plant Mol Biol 28:1005–1065

    Google Scholar 

  • Kaewkannetra P, Enmak P, Chiu TY (2012) The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for bio-diesel production. Bioproc Biosyst Eng 1:591–597

    Article  Google Scholar 

  • Kazan K (2003) Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trend Plant Sci 8:468–471

    Article  CAS  Google Scholar 

  • Legay S, Lamoureux D, Hausman JF, Hoffmann L, Evers D (2009) Monitoring gene expression of potato under salinity using cDNA microarrays. Plant Cell Rep 28:1799–1816

    Article  CAS  PubMed  Google Scholar 

  • Lenfant N, Hotelier T, Bourne Y, Marchot P, Chatonnet A (2013) A proteins with an alpha/beta hydrolase fold: relationships between subfamilies in an ever-growing superfamily. Chemico-Biol Interact 203:266–268

    Article  CAS  Google Scholar 

  • Li XP, Zhu XY, Mao J, Zou Y, Fu DW, Chen WX, Lu WJ (2013) Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit. Plamt Physiol Biochem 70:81–92

    Article  CAS  Google Scholar 

  • Li JG, Pu LJ, Han MF, Zhu Zhang RS, Xiang Z (2014) Soil salinization research in China: advances and prospects. J Geogr Sci 24:943–960

    Article  Google Scholar 

  • Li T, Sun JK, Liu JT (2015) Role of different transcription factor families in the regulatory networks of drought and salinity tolerance in plants. Chin Bull Life Sci 27:217–226

    Google Scholar 

  • Lin FY, Lu QX, Xu JH, Shi JR (2008) Cloning and expression analysis of two salt and Fusarium graminearum stress associated UDP-glucosyltransferases genes in wheat. Hereditas 30:1608–1614

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Kim HJ, Zhong SL, Chen HB, Hu ZQ, Zhou BY (2014) De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genom 15:809

    Article  Google Scholar 

  • Mao XH, Liu CL, Yan LPS, Li L, Wang SG, Yang QS, Xia Y (2008) Salt damage mechanism to plants and the coping strategies to salt stress in plants. J Shandong For Sci Technol 4:128–130

    Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Lou CF (2008) Isolation of an 1-aminocyclopropane-1-carboxylate oxidase gene from mulberry (Morus alba L.) and analysis of the function of this gene in plant development and stresses response. J Plant Physiol 165:1204–1213

    Article  CAS  PubMed  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186

    Article  CAS  PubMed  Google Scholar 

  • Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C (2009) The transporter classification database: recent advances. Nucleic Acids Res 37(D1):D274–D278

    Article  CAS  PubMed  Google Scholar 

  • Salama ES, Kim HC, Abou-Shanab RAI, Ji MK, Oh YK, Kim S, Jeon BH (2013) Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioproc Biosyst Eng 36:827–833

    Article  CAS  Google Scholar 

  • Shameer K, Ambika S, Varghese SM, Karaba N, Dayakumar MU, Sowdhamini R (2009) STIFDB—arabidopsis stress responsive transcription factor database. Int J Plant Genom 2009:583429

    CAS  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5(5):430–436

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Bysani C, Aruni B, Sumanth DP (2002) Lipid peroxidation-derived aldehydes and oxidative stress in the failing heart: role of aldose reductase. Am J Physiol-Heart Circ Physiol 283:H2612–H2619

    Article  CAS  PubMed  Google Scholar 

  • Stein H, Honig A, Miller G, Erster O, Eilenberg H, Csonka LN, Szabados L, Koncz C, Zilberstein A (2011) Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Sci 181:140–150

    Article  CAS  PubMed  Google Scholar 

  • Struik PC, Amaducci S, Bullard MJ, Stutterheim NC, Venturi G, Cromack HTH (2000) Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Ind Crop Prod 11:107–118

    Article  Google Scholar 

  • Sun AG (1993) China is the origin of Cannabis sativa. Plant Fibers Prod 3:45–48

    CAS  Google Scholar 

  • Sun ZB, Qi XY, Wang ZL, Li PH, Wu CX, Zhang H (2013) Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. Plant Physiol Biochem 69:82–89

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35:452–464

    Article  CAS  PubMed  Google Scholar 

  • Villarino GH, Bombarely A, Giovannoni JJ, Scanlon MJ, Mattson NS (2014) Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing. PLoS One 9:e94651

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan BL, Zha ZP, Du XS (2010) Expression profile analysis of rice heat shock transcription factor (HSF) genes in response to plant hormones and abiotic stresses. China Biotechnol 30:22–32

    CAS  Google Scholar 

  • Wang WY, Lu BH, Xu MY, Jamil M, Wang G (2015) ABA-induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in Oryza sativa. Biochem Biophys Res Commun 464:33–37

    Article  CAS  PubMed  Google Scholar 

  • Xiang JH, Ran J, Zhou J, Zhou XY, Liu AL, Zhang XW, Peng Y, Tang N, Luo Y (2013) Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Rep 32:1795–1806

    Article  CAS  PubMed  Google Scholar 

  • Yang RL (2003) Cannabis cultivation and utilization. China Fiber Insp 3:41

    Google Scholar 

  • Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye SF, Yu SW, Shu LB, Wu JH, Wu AZ, Luo LJ (2012) Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. Chin Sci Bull 57:336–343

    Article  CAS  Google Scholar 

  • Zeng JQ, Zhang MY (2006) The role of alternative splicing in the regulation of plant stress-associated gene expression. Plant Physiol Commun 42:1005–1014

    CAS  Google Scholar 

  • Zhai Y, Wang Y, Li YJ, Lei TT, Yan F, Su LT, Li XW, Zhao Y, Sun X, Li JW, Wang QY (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513:174–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Liu X, Wang XD, Zhou MP, Zhou XY, Ye XG, Wei XN (2012) An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytol 196:1155–1170

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Feng JJ, Lu J, Yang YZ, Zhang X, Wan DS, Liu JQ (2014) Transcriptome differences between two sister desert poplar species under salt stress. BMC Genom 15:337

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of the National Natural Science Foundation of China (Grant No. 31371678 and 31501350) and the China Agriculture Research System (CARS-19-E15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feihu Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Qiao, Q., Cheng, X. et al. Transcriptome differences between fiber-type and seed-type Cannabis sativa variety exposed to salinity. Physiol Mol Biol Plants 22, 429–443 (2016). https://doi.org/10.1007/s12298-016-0381-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-016-0381-z

Keywords