Skip to main content

Microbial secondary metabolites ameliorate growth, in planta contents and lignification in Withania somnifera (L.) Dunal

Abstract

In the present investigation, metabolites of Streptomyces sp. MTN14 and Trichoderma harzianum ThU significantly enhanced biomass yield (3.58 and 3.48 fold respectively) in comparison to the control plants. The secondary metabolites treatments also showed significant augmentation (0.75–2.25 fold) in withanolide A, a plant secondary metabolite. Lignin deposition, total phenolic and flavonoid content in W. somnifera were maximally induced in treatment having T. harzianum metabolites. Also, Trichoderma and Streptomyces metabolites were found much better in invoking in planta contents and antioxidants compared with their live culture treatments. Therefore, identification of new molecular effectors from metabolites of efficient microbes may be used as biopesticide and biofertilizer for commercial production of W. somnifera globally.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    CAS  Article  PubMed  Google Scholar 

  2. Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bhattacharya SK, Satyan KS, Ghosal S (1997) Antioxidant activity of glycowithanolides from Withania somnifera. Ind J Exp Biol 35:236–239

    CAS  Google Scholar 

  4. Borisova SA, Circello BT, Zhang JK, van der Donk WA, Metcalf WW (2010) Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633. Chem Biol 17:28–37

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30. doi:10.1016/S0023-6438(95)80008-5

    CAS  Article  Google Scholar 

  6. Gupta R, Pandey R (2015) Microbial interference ameliorates essential oil yield and diminishes root-knot infestation in sweet basil under field conditions. Biocontrol Sci Technol 25:1165–1179. doi:10.1080/09583157.2015.1036728

    Article  Google Scholar 

  7. Gupta R, Saikia SK, Pandey R (2015a) Bioconsortia augments antioxidant and yield in Matricaria recutita L. against Meloidogyne incognita (Kofoid and White) Chitwood Infestation. Proc Natl Acad Sci Ind Sect B: Biol Sci. doi:10.1007/s40011-015-0621-y

    Google Scholar 

  8. Gupta R, Tiwari S, Saikia SK, Shukla V, Singh R, Singh SP, Ajay Kumar PV, Pandey R (2015b) Exploitation of microbes for enhancing bacoside content and reduction of Meloidogyne incognita infestation in Bacopa monnieri L. Protoplasma 252:53–61. doi:10.1007/s00709-014-0657-5

    CAS  Article  PubMed  Google Scholar 

  9. Gupta R, Singh A, Pandey R (2016) Microbes based technology ameliorates glandular trichomes, secondary metabolites and antioxidant in Pelargonium graveolens L’Her. J Sci Food Agric. doi:10.1002/jsfa.7617

    Google Scholar 

  10. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  Article  PubMed  Google Scholar 

  11. Kothari SK, Singh CP, Vijay Kumar Y, Singh K (2003) Morphology, yield and quality of ashwagandha (Withania somnifera L. Dunal) roots and its cultivation economics as influenced by tillage depth and plant population density. J Horticul Sci Biotechnol 78:422–425

    Article  Google Scholar 

  12. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Article  Google Scholar 

  14. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918

    CAS  Article  Google Scholar 

  15. Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Alter Med Rev 5:334–346

    CAS  Google Scholar 

  17. Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting rhizobacteria NRRL B-30488. J Agric Food Chem 56:4474–4481

    CAS  Article  PubMed  Google Scholar 

  18. Pathma J, Rahul GR, Kamaraj KR, Subashri R, Sakthivel N (2011) Secondary metabolite production by bacterial antagonists. J Biol Control 25:165–181

    Google Scholar 

  19. Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4:330–337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2:27–30

    Google Scholar 

  21. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    CAS  Article  Google Scholar 

  22. Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33. doi:10.1016/j.soilbio.2015.04.001

    CAS  Article  Google Scholar 

  23. Scartezzini P, Antognoni F, Conte L, Maxia A, Troia A, Poli F (2007) Genetic and phytochemical difference between some Indian and Italian plants of Withania somnifera (L.) Dunal. Nat Prod Res 21:923–932. doi:10.1080/14786410701500169

    CAS  Article  PubMed  Google Scholar 

  24. Shrivastava AK, Sahu PK (2013) Economics of yield and production of alkaloid of Withania somnifera (L.) Dunal. Am J Plant Sci 4:2023–2030

    Article  Google Scholar 

  25. Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40. doi:10.1016/j.micres.2012.07.001

    CAS  Article  PubMed  Google Scholar 

  26. Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2014) Beneficial compatible microbes enhance antioxidants in chickpea edible parts through synergistic interactions. LWT Food Sci Technol 56:390–397. doi:10.1016/j.lwt.2013.11.030

    CAS  Article  Google Scholar 

  27. Singh SP, Gupta R, Gaur R, Srivastava AK (2015) Antagonistic actinomycetes mediated resistance in Solanum lycopersicon Mill. against Rhizoctonia solani Kühn. Proc Natl Acad Sci Ind Sect B: Biol Sci. doi:10.1007/s40011-015-0651-5

    Google Scholar 

  28. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticul 16:144–158

    CAS  Google Scholar 

  29. Tarkka M, Hampp R (2008) Secondary metabolites of soil streptomycetes in biotic interactions. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, Heidelberg, pp 107–126

    Chapter  Google Scholar 

  30. Verma P, Khan SA, Mathur AK, Ghosh S, Shanker K, Kalra A (2014) Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor. Protoplasma 251:1359–1371. doi:10.1007/s00709-014-0638-8

    CAS  Article  PubMed  Google Scholar 

  31. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    CAS  Article  Google Scholar 

  32. Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711. doi:10.1111/j.1472-765X.2009.02599.x

    CAS  PubMed  Google Scholar 

  33. Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Wood S, Lorito M (2012) Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun 7:1545–1550

    CAS  PubMed  Google Scholar 

  34. Wang SY, Zheng W (2005) Preharvest application of methyl jasmonate increases fruit quality and antioxidant capacity in raspberries. Intern J Food Sci Technol 40:187–195

    CAS  Article  Google Scholar 

  35. Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273. doi:10.1111/j.1365-313X.2008.03593.x

    CAS  Article  PubMed  Google Scholar 

  36. Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49:5165–5170. doi:10.1021/jf010697n

    CAS  Article  PubMed  Google Scholar 

  37. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. doi:10.1016/S0308-8146(98)00102-2

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to the Director, CSIR-CIMAP, Lucknow, India for providing necessary facilities during experimental period.

Author contributions

A.S., R.P.: Conceived and designed the experiments, manuscript writing. A.S., R.G.: Performed and conceptualization of the experimental data. M.S., M.M.G.: Performed and analyzed the HPLC data. R.P.: Critical revision of the manuscript. All authors read and approved the final manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rakesh Pandey.

Ethics declarations

Conflict of interest

The authors declare that there exists no potential conflict of interest among them.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 791 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Gupta, R., Srivastava, M. et al. Microbial secondary metabolites ameliorate growth, in planta contents and lignification in Withania somnifera (L.) Dunal. Physiol Mol Biol Plants 22, 253–260 (2016). https://doi.org/10.1007/s12298-016-0359-x

Download citation

Keywords

  • Microbes
  • Lignifications
  • Secondary metabolites
  • Withania somnifera