Skip to main content

Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare

Abstract

Origanum vulgare L is commonly known as a wild marjoram and winter sweet which has been used in the traditional medicine due to its therapeutic effects as stimulant, anticancer, antioxidant, antibacterial, anti-inflammatory and many other diseases. A reliable gene transfer system via Agrobacterium rhizogenes and plant regeneration via hairy roots was established in O. vulgare for the first time. The frequency of induced hairy roots was different by modification of the co-cultivation medium elements after infection by Agrobacterium rhizogenes strains K599 and ATCC15834. High transformation frequency (91.3 %) was achieved by co-cultivation of explants with A. rhizogenes on modified (MS) medium. The frequency of calli induction with an 81.5 % was achieved from hairy roots on MS medium with 0.25 mg/L−1 2,4-D. For shoot induction, initiated calli was transferred into a medium containing various concentrations of BA (0.1, 0.25, 0.5, 0.75 and 1 mg/L−1). The frequency of shoot generation (85.18 %) was achieved in medium fortified with 0.25 mg/L−1 of BA. Shoots were placed on MS medium with 0.25 mg/l IBA for root induction. Roots appeared and induction rate was achieved after 15 days.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

2,4-D:

2,4 dichlorophenoxyacetic acid

BA:

6- Benzyladenine

NAA:

α-Naphthalene Acetic Acid

IBA:

Indol-3- Butyric Acid

References

  1. Ahmadi Moghadam Y, Piri KH, Bahramnejad B, Habibi P (2013) Methyl jasmonate and salicylic acid effects on the dopamine production in hairy cultures of Portulaca oleracea (Purslan). BEPLS 2:89–94

    Google Scholar 

  2. Al-Shalabia Z, Stevens-Kalceffb MA, Doran PM (2014) Application of Solanum lycopersicum (tomato) hairy roots for production of passivated CdS nanocrystals with quantum dot properties. Biochem Eng J 84:36–44

    Article  Google Scholar 

  3. Azadi P, Chin DP, Kuroda K, Khan RS, Mii M (2010) Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tissue Organ Cult 101:201–209. doi:10.1007/s11240-010-9677-9

    CAS  Article  Google Scholar 

  4. Béjaoui A, Chaabane H, Jemli M, Boulila A, Boussaid M (2013) Essential oil composition and antibacterial activity of Origanum vulgare subsp. glandulosum Desf. at different phenological stages. J Med Food 16:1115–1120. doi:10.1089/jmf.2013.0079

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371–395

    CAS  Article  Google Scholar 

  6. Christey MC, Sinclair BK, Braun RH, Wyke L (1997) Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep 16:587–593

    CAS  Article  Google Scholar 

  7. Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR–PhoB regulatory system. J Bacteriol 186:4492–4501

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. de Souza GT, de Carvalho RJ, de Sousa JP, Tavares JF, Schaffner D, de Souza EL, Magnani M (2016) Effects of the essential oil from Origanum vulgare L. on survival of pathogenic bacteria and starter lactic acid bacteria in semihard cheese broth and slurry. J Food Prot 79:246–252. doi:10.4315/0362-028x.jfp-15-172

    Article  PubMed  Google Scholar 

  9. Dupre P, Lacoux Y, Neutelings G, Matar-Lavrain D, Fliniaux MA, David A, Jacquin-Dubreuil A (2003) Genetic transformation of Ginkgo biloba by A. tumefaciens. Physiol Plant 108:413–419

    Article  Google Scholar 

  10. Flego D, Pirhonen M, Saarilahti H, Palva TK, Palva ET (1997) Control of virulence gene expression by plant calcium in the phytopathogen Erwinia carotovora. Mol Microbiol 25:831–838

    CAS  Article  PubMed  Google Scholar 

  11. Georgiev MI, Jutta LM, Bley T (2010) Hairy root culture: copying nature in new bioprocesses. Med Plant Biotechnol 156–175. doi:10.1079/9781845936785.0156

  12. Georgiev MI, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537

    CAS  Article  PubMed  Google Scholar 

  13. Govindarajan M, Rajeswary M, Hoti SL, Benelli G (2016) Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res Vet Sci 104:77–82. doi:10.1016/j.rvsc.2015.11.011

    CAS  Article  PubMed  Google Scholar 

  14. Han JS, Oh DG, Mok IG, Park HG, Kim CK (2004) Efficient plant regeneration from cotyledon explants of bottle gourd (Lagenaria siceraria Standl.). Plant Cell Rep 23:291–296

    CAS  Article  PubMed  Google Scholar 

  15. Han XL, Bu HY, Hao JG, Zhao YW, Jia JF (2006) [Hairy root induction and plant regeneration of crownvetch (Coronilla varia L.) transformed by Agrobacterium rhizogenes] Sheng wu gong cheng xue bao = Chinese. J Biotechnol 22:107–113

    Google Scholar 

  16. Harfi B, Khelifi-Slaoui M, Bekhouche M, Benyammi R, Hefferon K, Makhzoum A, Khelifi L (2015) Hyoscyamine production in hairy roots of three Datura species exposed to high-salt medium. In Vitro Cell Dev Biol Plant 1–7. doi:10.1007/s11627-015-9725-6

  17. He-Ping S, Yong-Yue L, Tie-Shan S, Eric TPK (2011) Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon cablin. Plant Cell Tissue Organ Cult 107:251–260

    Article  Google Scholar 

  18. Hoshi Y, Kondo M, Mori S, Adachi Y, Nakano M, Kobayashi H (2004) Production of transgenic lily plants by Agrobacterium mediated transformation. Plant Cell Rep 22:359–364

    CAS  Article  PubMed  Google Scholar 

  19. Jouanin L, Guerche P, Pamboukdjian N, Tourneur C, Casse-Delbart F, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392

    CAS  Article  Google Scholar 

  20. Katavic V, Jelaska S (1991) The influence of plant growth regulators on callus induction in pumpkin (Cucurbita pepo L.) hairy roots. Int J Dev Biol 35:265–268

    CAS  PubMed  Google Scholar 

  21. Kumari N, Saradhi PP (1992) Regeneration of plants from callus cultures of Origanum vulgare L. Plant Cell Rep 11:46–479

    Article  Google Scholar 

  22. Lee SY, Kim JS, Lee CHY, Park NI, Park SU (2010) Influence of different strains of Agrobacterium rhizogenes on hairy root induction and production of alizarin and purpurin in Rubia akane Nakai Romanian. Biotechnol Lett 15:4

    Google Scholar 

  23. Lopes da Silva AL, Oliveira Y, Procopiuk C, Mudry CS, Brondani GE, Costa JL, Scheidt GN (2013) Transient expression of uidA gene in leaf explants of Eucalyptus saligna Sm. transformed via Agrobacterium tumefaciens. Biosci J 29:1–7

    Google Scholar 

  24. Makhzoum A, Petit-Paly G, St. Pierre B, Bernards MA (2011) Functional analysis of the DAT gene promoter using transient Catharanthus roseus and stable Nicotiana tabaccum transformation systems. Plant Cell Rep 30:1173–1182

    CAS  Article  PubMed  Google Scholar 

  25. Makhzoum AB, Sharma P, Bernards MA, Trémouillaux-Guiller J (2013) Hairy roots: an ideal platform for transgenic plant production and other promising applications. In: Phytochemicals, Plant Growth, and the Environment. Springer, pp 95–142

  26. Makhzoum A, Benyammi R, Moustafa K, Tremouillaux-Guiller J (2014) Recent advances on host plants and expression cassettes’ structure and function in plant molecular pharming. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy 28:145–159. doi:10.1007/s40259-013-0062-1

    CAS  Article  Google Scholar 

  27. Makhzoum A, Bjelica A, Petit-Paly G, Bernards MA (2015) Novel plant regeneration and transient gene expression in Catharanthus roseus. The All Results Journals: Biol 6:1–9

    Google Scholar 

  28. Moustafa K, Makhzoum A, Trémouillaux-Guiller J (2015) Molecular farming on rescue of pharma industry for next generations. Crit Rev Biotechnol 1–11. doi:10.3109/07388551.2015.1049934

  29. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Article  Google Scholar 

  30. Ninković S, Djordjevic T, Vinterhalter B, Uzelac B, Cingel A, Jelena Savić J, Radovic S (2010) Embryogenic responses of Beta vulgaris L. callus induced from transgenic hairy roots. Plant Cell Tissue Organ Cult 103:81–91

    Article  Google Scholar 

  31. Noh EW, Minocha SC (1986) High efficiency shoot regeneration from callus of quaking aspen (Populus tremuloides Michx). Plant Cell Rep 5:464–467

    CAS  Article  PubMed  Google Scholar 

  32. Ohara A, Akasaka Y, Daimon H, Mii M (2000) Plant regeneration from hairy roots induced by infection with Agrobacterium rhizogenes in Crotalaria juncea L. Plant Cell Rep 19:563–568

    CAS  Article  Google Scholar 

  33. Otani M, Mii M, Handa T, Kamada H, Shimada T (1993) Transformation of sweet potato (Ipomoea batatas (L) Lam) plants by Agrobacterium rhizogenes. Plant Sci 94:151–159

    CAS  Article  Google Scholar 

  34. Otani M, Shimada T, Kamada H, Teruya H, Mii M (1996) Fertile transgenic plants of Ipomoea trichocarpa Ell induced by different strains of Agrobacterium rhizogenes. Plant Sci 116:169–175

    CAS  Article  Google Scholar 

  35. Pahlavan Y, Sepehri G, Sheibani V, Afarinesh khaki M, Gojazadeh M, Pahlavan B, Pahlavan F (2013) Study the antinociceptive effect of intracerebroventricular injection of aqueous extract of Origanum vulgare leaves in rat: possible involvement of opioid system iranian. J Basic Med Sci 16:1109–1113

    Google Scholar 

  36. Paul M et al. (2011) Molecular Pharming: future targets and aspirations. Hum Vaccin 7:375–382

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Porter RR (1991) Host range and implication of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421

    Article  Google Scholar 

  38. Saha S, Mori H, Hattori K (2007) Synergistic effect of kinetin and Benzyl Adenine plays a vital role in high frequency regeneration from cotyledon explants of bottle gourd (Lagenaria siceraria) in relation to ethylene production. Biotech Sci 57:197–202

    CAS  Google Scholar 

  39. Sevón N, Oksman C, Kirsi M (2002) Agrobacterium rhizogenes mediated transformation: root culture as source of alkaloids. Planta Med 68:859–868

    Article  PubMed  Google Scholar 

  40. Sharafi A, Sohi HH, Mousavi A, Azadi P, Razavi K, Ntui VO (2012) A reliable and efficient protocol for inducing hairy roots in Papaver bracteatum. Plant Cell Tissue and Organ Cult (PCTOC) 113:1–9. doi:10.1007/s11240-012-0246-2

    Article  Google Scholar 

  41. Sharafi A, Hashemi SH, Azadi P, Sharafi AA (2014) Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiol Mol Biol Plants 20:257–262

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:171–184

    Article  Google Scholar 

  43. Trypsteen M, Van Lijsebettens M, Van Severen R, Van Montagu M (1991) Agrobacterium rhizogenes-mediated transformation of Echinacea purpurea. Plant Cell Rep 10:85–89

    CAS  Article  PubMed  Google Scholar 

  44. Vervliet G, Holsters M, Teuchy H, Van Montagu M, Schell J (1975) Characterization of different plaque-forming and defective temperate phages in Agrobacterium strains. J Gen Virol 23:33–48

    Article  Google Scholar 

  45. Wang YM, Wang JB, Luo D, Jia JF (2001) Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi. Cell Res 11:279–284

    CAS  Article  PubMed  Google Scholar 

  46. White FF, Taylor BH, Huffman GA (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Winans SC (1990) Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172:2433–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang DC, Choi YE (2000) Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep 19:491–496

    CAS  Article  Google Scholar 

  49. Yang Y, Jittayasothorn YJ, Chronis DC, Wang X, Cousins P, Zhong GY (2013) Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots. PLoS One 8:e69463

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang L et al. (2007) Tropane alkaloids production in transgenic Hyoscyamus niger hairy root cultures overexpressing putresceine Nmethyltransferase in methyl jasmonatedependent. Planta 225:887–896

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Bioprocess Engineering and Biotechnology department of Federal University of Parana (UFPR), Brazil.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Abdullah Makhzoum or Carlos Ricardo Soccol.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Habibi, P., de Sa, M.F.G., da Silva, A.L.L. et al. Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare . Physiol Mol Biol Plants 22, 271–277 (2016). https://doi.org/10.1007/s12298-016-0354-2

Download citation

Keywords

  • Origanum vulgare
  • Agrobacterium rhizogenes
  • Hairy roots
  • Calli
  • Regeneration