Nitrogen stress-induced alterations in the leaf proteome of two wheat varieties grown at different nitrogen levels

Abstract

Inorganic nitrogen (N) is a key limiting factor of the agricultural productivity. Nitrogen utilization efficiency has significant impact on crop growth and yield as well as on the reduction in production cost. The excessive nitrogen application is accompanied with severe negative impact on environment. Thus to reduce the environmental contamination, improving NUE is need of an hour. In our study we have deployed comparative proteome analysis using 2-DE to investigate the effect of the nitrogen nutrition on differential expression pattern of leaf proteins in low-N sensitive and low-N tolerant wheat (Triticum aestivum L.) varieties. Results showed a comprehensive picture of the post-transcriptional response to different nitrogen regimes administered which would be expected to serve as a basic platform for further characterization of gene function and regulation. We detected proteins related to photosynthesis, glycolysis, nitrogen metabolism, sulphur metabolism and defence. Our results provide new insights towards the altered protein pattern in response to N stress. Through this study we suggest that genes functioning in many physiological events coordinate the response to availability of nitrogen and also for the improvement of NUE of crops.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrol YP (1993) Nitrogen - soils, physiology, biochemistry, genetics & microbiology. Proceedings Indian National Science Academy, New Delhi, p 285

    Google Scholar 

  2. Abrol YP, Chatterjee SR, Kumar PA, Jain V (1999) Improvement in nitrogenous fertilizer utilization – physiological and molecular approaches. Curr Sci 76:1357–1364

    Google Scholar 

  3. Abrol YP, Raghuram N, Sachdev MS (2008) Agricultural N Use and its environmental implications. IK International Publications, New Delhi, p 552

    Google Scholar 

  4. Agrawal GK, Rakwal R (2006) Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrosc Rev 25:1–53

    CAS  Article  Google Scholar 

  5. Ahmad A, Abdin MZ (1999) NADH: nitrate reductase and NAD (P) H: nitrate reductase activities in mustard seedlings. Plant Sci 143:1–8

    CAS  Article  Google Scholar 

  6. Ali G, Komatsu S (2006) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res 5:396–403

    CAS  PubMed  Article  Google Scholar 

  7. Amiour N, Imbaud S, Clément G, Agier N, Zivy M, Valot B, Balliau T, Armengaud P, Quilleré I, Cañas R, Tercet-Laforgue T, Hirel B (2012) The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. J Exp Bot 63:5017–5033

    CAS  PubMed  Article  Google Scholar 

  8. Andrews M, Lea PJ (2013) Our nitrogen ‘footprint’: the need for increased crop nitrogen use efficiency. Ann Appl Biol 163:165–169

    CAS  Article  Google Scholar 

  9. Averinaa NG, Beyzaeia Z, Shcherbakova RA, Usatovb AV (2014) Role of nitrogen metabolism in the development of salt tolerance in barley plants. Russ J Plant Physiol 61:97–104

    Article  Google Scholar 

  10. Baker MG, Press MC, Brown ND (1997) Photosynthetic characteristics of dipterocarp seedlings in three tropical rain forest light environments: a basis for niche partitioning? Ocelogia 112:453–463

    Article  Google Scholar 

  11. Bates BZ, Kundzewicz SW, Palutik J (2008) (Eds) In: Observed and projected changes in climate as they relate to water, Climate change and water, IPCC Secretariat, Geneva

  12. Busk PK, Møller BL (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol 129:1222–1231

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Bahrman N, Gouy A, Devienne-Barret F, Hirel B, Vedele F, Le Gouis J (2005) Differential change in root protein patterns of two wheat varieties under high and low nitrogen nutrition levels. Plant Sci 168:81–87

    CAS  Article  Google Scholar 

  14. Cai H, Zhou Y, Xiao J, Li X, Zhang Q, Lian X (2009) Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Report 28:527–537

    CAS  Article  Google Scholar 

  15. Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A (2008) Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem 391:381–390

    CAS  PubMed  Article  Google Scholar 

  16. Chandna R, Gupta S, Ahmad A, Iqbal M, Prasad M (2010) Variability in Indian bread wheat (Triticum aestivum L.) varieties differing in nitrogen efficiency as assessed by microsatellite markers. Protoplasma 242:55–67

    CAS  PubMed  Article  Google Scholar 

  17. Chandna R, Kaur G, Iqbal M, Khan I, Ahmad A (2012) Differential response of wheat varietiess to applied nitrogen: biochemical and molecular analysis. Arch Agron Soil Sci 58:915–929

    CAS  Article  Google Scholar 

  18. Chen L, Hamada S, Fujiwara M, Zhu T, Thao NP, Wong HL, Krishna P, Ueda T, Kaku H, Shibuya N, Kawasaki T, Shimamoto K (2010) The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7:185–196

    CAS  PubMed  Article  Google Scholar 

  19. Cladas TD, Yaagoubi AE, Richarme G (1998) Chaperone properties of bacterial elongation factor. J Biol Chem 273:11473–11482

    Google Scholar 

  20. Coque M, Gallais A (2006) Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theor Appl Genet 112:1205–1220

    CAS  PubMed  Article  Google Scholar 

  21. Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Chivasa S, Ndimba BK, Simon WJ, Robertson D, Yu XL, Knox JP, Bolwell P, Slabas P (2002) Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23:1754–1765

    CAS  PubMed  Article  Google Scholar 

  23. Damerval C, Le Guilloux M, Blaisonneau J, de Vienne D (1986) Technical improvements in twp dimensional electrophoresis increased the level of genetic variation detected in wheat seedling proteins. Electrophoresis 7:158–159

    Article  Google Scholar 

  24. Douce R, Bourguignon J, Neuburger M, Rebeille F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6:167–176

    CAS  PubMed  Article  Google Scholar 

  25. F.A.O. (2010) Yearbook, India: Food and Agriculture Organization

  26. Flæte NES, Hollung K, Ruud L, Sogn T, Færgestad EM, Skarpeid HJ, Magnus EM, Uhlen AK (2005) Combined nitrogen and sulphur fertilisation and its effect on wheat quality and protein composition measured by SE-FPLC and proteomics. J Cereal Sci 41:357–369

    Article  Google Scholar 

  27. Debouba M, Gouia H, Suzuki A, Ghorbel MH (2007) NaCl effects on enzymes involved in nitrogen assimilation pathway in tomato Lycopersicon esculentum seedlings. J Plant Physiol 163:1247–1258

    Article  Google Scholar 

  28. Dixon DP, Edwards R (2010) Glutathione transferases. The Arabidopsis Book 8:e0131 10.1199/tab.0131

  29. Dixon RA, Pasinetti GM (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154:453–457

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Forde BG (2002) Local and long-range signalling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203–224

    CAS  PubMed  Article  Google Scholar 

  32. Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55:295–306

    CAS  PubMed  Article  Google Scholar 

  33. Grove H, Hollung K, Moldestad A, Færgestad EM, Uhlen AK (2009) Proteome changes in wheat subjected to different nitrogen and sulfur fertilizations. J Agric Food Chem 57:4250–4258

    CAS  PubMed  Article  Google Scholar 

  34. Garg R, Kumari R, Tiwari S, Goyal S (2014) Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes. PLoS ONE 9:e88947. doi:10.1371/journal.pone.0088947

    PubMed Central  PubMed  Article  Google Scholar 

  35. Giege P, Grienenberger JM, Bonnard G (2008) Cytochrome c biogenesis in mitochondria. Mitochondrion 8:61–73

    CAS  PubMed  Article  Google Scholar 

  36. Guo J, Liu X, Zhang Y, Shen J, Han W, Zhang W, Christie P, Goulding K, Vitousek P, Zhang F (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    CAS  PubMed  Article  Google Scholar 

  37. Hirel B, Bertin P, Isabella Q, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallis A (2001) Towards better understanding of thegenetic and physiological basis for nitrogen use efficiency in Maize. Plant Physiol 125:1258–1270

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    CAS  PubMed  Article  Google Scholar 

  39. Hirel B, Martin Tercé-Laforgue T, Gonzalez-Moro MB, Estavillo JM (2005) Physiology of maize. I. A comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol Plant 124:167–177

    CAS  Article  Google Scholar 

  40. Ireland RJ, Lea PJ (1999) The enzymes of glutamine, glutamate, asparagine and aspirate metabolism. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 49–109

    Google Scholar 

  41. Kichey T, Heumez E, Pocholle P, Pageau K, Vanacker H, Dubois F, Le Gouis J, Hirel B (2006) Combined agronomic and physiological aspects of nitrogen management in wheat (Triticum aestivum L.). Dynamic and integrated views highlighting the central role for the enzyme glutamine synthetase. New Phytol 169:265–278

    CAS  PubMed  Article  Google Scholar 

  42. Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim IS, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539

    CAS  PubMed  Article  Google Scholar 

  43. Kudlicki W, Coffmann A, Kramer G, Hardesty B (1997) Renaturation of Rhodonase by translational elongation factor (EF) Tu: protein refolding by EF-Tu flexing. J Biol Chem 272:32206–32210

    CAS  PubMed  Article  Google Scholar 

  44. Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Biol 10:310–316

    CAS  Article  Google Scholar 

  45. Kumar ME, Govind G, Kang L, Mysore KS, Udayakumar M (2007) Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta 225:523–539

    Article  Google Scholar 

  46. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Article  Google Scholar 

  47. Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Anal Bot 103:561–579

    CAS  Article  Google Scholar 

  48. Liao C, Peng Y, Ma W, Liu R, Li C, Li X (2012) Proteomic analysis revealed nitrogen-mediated metabolic, developmental, and hormonal regulation of maize (Zea maysL.) ear growth. J Exp Bot 63:5275–5288

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  49. Liu YJ, Han XM, Ren LL, Yang HL, Zeng QY (2014) Supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiol 161:773–786

    Article  Google Scholar 

  50. Moulin M, Smith AG (2005) Regulation of tetrapyrrole biosynthesis in higher plants. Biochem Soc Trans 33:737–742

    CAS  PubMed  Article  Google Scholar 

  51. Nakano R, Ishida H, Makino A, Mae T (2006) In vivo fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species in an intact leaf of cucumber under chilling-light conditions. Plant Cell Physiol 47:270–276

    CAS  PubMed  Article  Google Scholar 

  52. Noctor G, Foyer CH (2000) A re-evaluation of the ATP: NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49:329–332

    Google Scholar 

  53. Mayfield SP, Rahire M, Frank G, Zuber H, Rochaix JD (1987) Expression of the nuclear gene encoding oxygen-evolving enhancer protein 2 is required for high levels of photosynthetic oxygen evolution in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 84:749–753

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  54. Mengiste T, Revenkova E, Bechtold N, Paszkowski J (1999) An SMC-like protein is required for efficient homologous recombination in Arabidopsis. EMBO J 18:4505–4512

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  55. Mokhele B, Zhan X, Yang G, Zhang X (2012) Review: nitrogen assimilation in crop plants and its affecting factors. Can J Plant Sci 92:399–405

    CAS  Article  Google Scholar 

  56. Murota KI, Ohshita Y, Watanabe A, Aso S, Sato F, Yamada Y (1994) Changes related to salt tolerance in thylakoid membranes of photoautotrophically cultured green tobacco cells. Plant Cell Physiol 35:107–113

    CAS  Google Scholar 

  57. O’ Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    Google Scholar 

  58. Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ (2006) Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol 142:1304–1317

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  59. Park OK (2004) Proteomic studies in plants. J Mol Biol 37:133–138

    CAS  Google Scholar 

  60. Pathak RR, Lochab S, Raghuram N (2011) Plant Systems | Improving Plant Nitrogen-Use Efficiency. In: Murray Moo-Young (ed.), Comprehensive Biotechnology 4:209–218

  61. Portis AR Jr, Parry MAJ (2007) Discoveries in Rubisco (Ribulose 1, 5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth Res 94:121–143

    CAS  PubMed  Article  Google Scholar 

  62. Qian P, Schoenau J (2007) Using an anion exchange membrane to predict soil available N and S supplies and the impact of N and S fertilization on Canola and wheat growth. Pedosphere 17:77–83

    CAS  Article  Google Scholar 

  63. Rakwal R, Agrawal GK, Kubo A, Yonekura M, Tamogami S, Saji H, Iwahashi H (2003) Defense/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulphate dioxide. Environ Exp Bot 49:223–235

    CAS  Article  Google Scholar 

  64. Regalado AP, Pinheiro C, Vidal S, Chaves I, Ricardo CPP, Rodrigues-Pousada C (2000) The Lupinus albus class-III chitinase gene, IF3, is constitutively expressed in vegetative organs and developing seeds. Planta 210:543–550

    CAS  PubMed  Article  Google Scholar 

  65. Rosales EPMF, Iannone M, Groppa DM, Benavides P (2011) Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiol Biochem 49:124–130

    CAS  PubMed  Article  Google Scholar 

  66. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  67. Sandermann H (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84

    CAS  PubMed  Article  Google Scholar 

  68. Shrawat AK, Good AG (2008) Genetic Engineering Approaches to Improving Nitrogen Use Efficiency, ISB News Report May

  69. Spitsberg VL, Coscia CJ (2005) Quinone reductases of higher plants. Eur J Biochem 127:67–70

    Article  Google Scholar 

  70. Sugihara K, Hanagata N, Dubinsky Z, Baba S, Karube I (2000) Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol 41:1279–1285

    CAS  PubMed  Article  Google Scholar 

  71. Takahashi H, Takahara K, Hashida S, Hirabayashi T, Fujimori T, Yamada MK, Yamaya T, Yanagisawa S, Uchimiya H (2009) Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene. Plant Physiol 151:100–113

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  72. Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104:119–190

    CAS  Article  Google Scholar 

  73. Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 591:2290–2300

    Article  Google Scholar 

  74. Tada Y, Kashimura T (2009) Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant Cell Physiol 50:439–445

    CAS  PubMed  Article  Google Scholar 

  75. Tanaka T, Fuchs J, Loidl J, Nasmyth K (2000) Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat Cell Biol 2:492–499

    CAS  PubMed  Article  Google Scholar 

  76. Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:1360–1385

    Article  Google Scholar 

  77. Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    CAS  PubMed  Article  Google Scholar 

  78. van der Holst PPG, Schlaman HRM, Spaink HP (2001) Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Curr Opin Struct Biol 11:608–616

    PubMed  Article  Google Scholar 

  79. Wallsgrove RM, Turner JC, Hall NP, Kendall AC, Bright SWJ (1987) Barley mutants lacking chloroplast glutamine synthetase biochemical and genetic analysis. Plant Physiol 83:155–158

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  80. Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulphate metabolism. Plant Physiol 132:556–567

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  81. Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  82. Yan JB, Tang H, Huang YQ, Zheng YL, Li JS (2006) Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica 149:121–131

    CAS  Article  Google Scholar 

  83. Young CC, Bernlohr RW (1991) Elongation factor Tu is methylated in response to nutrient deprivation in Escherichia coli. J Bacteriol 173:3096–3100

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Wang X (2004) Lipid signalling. Curr Opin Plant Biol 7:329–336

    CAS  PubMed  Article  Google Scholar 

  85. Yu T, Li YS, Chen XF, Hu J, Chang X et al (2003) Transgenic tobacco plants over expressing cotton glutathione S- transferase (GST) show enhanced resistance to methyl viologen. J Plant Physiol 160:1305–1311

    CAS  PubMed  Article  Google Scholar 

  86. Zhu C, Luo N, He M, Chen G, Zhu J et al (2014) Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L. PLoS ONE 9:e94704

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Altaf Ahmad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandna, R., Ahmad, A. Nitrogen stress-induced alterations in the leaf proteome of two wheat varieties grown at different nitrogen levels. Physiol Mol Biol Plants 21, 19–33 (2015). https://doi.org/10.1007/s12298-014-0277-8

Download citation

Keywords

  • MALDI-TOF
  • Nitrogen deficiency
  • Triticum aestivum
  • Proteomics