Skip to main content

Advertisement

Log in

Plant growth stimulation of wheat (Triticum aestivum L.) by inoculation of salinity tolerant Azotobacter strains

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Five salinity tolerant Azotobacter strains i.e., ST3, ST6, ST9, ST17 and ST24 were obtained from saline soils. These Azotobacter strains were used as inoculant for wheat variety WH157 in earthen pots containing saline soil under pot house conditions, using three fertilizer treatment doses i.e., control (no fertilizer, no inoculation), 90 Kg N ha−1 and 120 Kg N ha−1. Inoculation with salinity tolerant Azotobacter strains caused significant increase in total nitrogen, biomass and grain yield of wheat. Maximum increase in plant growth parameters were obtained after inoculation with Azotobacter strain ST24 at fertilization dose of 120 kg N ha−1 and its inoculation resulted in attaining 89.9 cms plant height, 6.1 g seed yield, 12.0 g shoot dry weight and 0.7 % total nitrogen. The survival of Azotobacter strain ST24 in the soil was also highest in all the treatments at 30, 60 and 90 days after sowing (DAS). However, the population of Azotobacter decreased on 90 DAS as compared to counts observed at 60 DAS at all the fertilization treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alikhan S, Kathiresan K, Ravikumar SL, Williams GP, Gracelin NAA (2007) Growth of Avicennia marina and Ceriops decandra seedlings inoculated with halophilic azotobacters. J Environ Biol 28:601–603

  • Ananthanaik T, Earanna N, Suresh CK (2007) Influence of Azotobacter chroococcum strains on growth and biomass of Adathoda vasica. J Agric Sci 20:613–615

    Google Scholar 

  • Chaudhary D, Anand RC, Narula N (2011) Isolation and characterization of salinity tolerant free living diazotrophs. Environ Ecol 29:1138–1142

    Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1999) Effect of salinity on growth, nodulation and nitrogen fixation of faba bean (Vicia faba L.). Appl Soil Ecol 11:1–7

    Article  Google Scholar 

  • de-Basan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—A comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova Z, Lugtenberg B (2008) High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat in Uzbekistan. Environ Microbiol 10:1–9

    PubMed  CAS  Google Scholar 

  • Flower TJ, Garcia A, Koyama M, Yeo AR (1997) Breeding for salt tolerance in crop plants the role of molecular biology. Acta Physiol Plant 19:427–433

    Article  Google Scholar 

  • Goel A, Sindhu SS, Dadarwal KR (1997) Nodule competence between bacteriocin producing effective and ineffective Rhizobium strains of Vigna. Indian J Microbiol 37:51–52

    Google Scholar 

  • Gonzalez-Lopez J, Salmeron V, Martinez-Toledo MV, Ballesteros F, Ramos-Cormenzana A (1986) Production of auxins, gibberellins and cytokinins by Azotobacter vinelandii ATCC 12837 in chemically-defined media and dialized soil media. Soil Biol Biochem 18:119–120

    Article  CAS  Google Scholar 

  • Hussain N, Ali A, Khan AG, Rehman OU, Tahir M (2003) Selectivity of ions absorption as mechanism of salt tolerance in rice (variety Shaheen Basmati). Asian J Plant Sci 2:445–448

    Article  Google Scholar 

  • Ibekwe AM, Poss JA, Grattan SR, Grieve CM, Suarez D (2010) Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH and boron. Soil Biol Biochem 42:567–575

    Article  CAS  Google Scholar 

  • Jadhav GG, Salunkhe DS, Nerkar DP, Bhadekar RK (2010) Isolation and characterization of salt tolerant nitrogen fixing microorganisms from food. J Eur Asia Bio Sci 4:33–40

    Article  Google Scholar 

  • Jensen V (1951) Notes on biology of Azotobacter. Proc Soc Appl Bacteriol 74:89–93

    Google Scholar 

  • Jones MG (2009) Using resources from the model plant Arabidopsis thaliana to understand effects of abiotic stress. Salinity Water Stress 44:129–132

    Google Scholar 

  • Lakshminarayana KR, Shukla B, Sindhu SS, Kumari P, Narula N, Sheoran RK (2000) Analogue-resistant mutants of Azotobacter chroococcum derepressed for nitrogenase activity and early ammonia excretion having potential as inoculants for cereal crops. Indian J Expt Biol 38:373–378

    CAS  Google Scholar 

  • Lakshminarayana K (1993) Influence of Azotobacter on nitrogen nutrition of plants and crop productivity. Proc Indian Nat Sci Acad B59:303–308

    Google Scholar 

  • Magda MA, Sabbagh SM, El-shouny WA, Ebrahim KH (2003) Physiological response of Zea mays to NaCl stress with respect to Azotobacter chroococcum and Streptomyces niveus. Pakistan J Biol Sci 6:2073–2080

    Article  Google Scholar 

  • Mahmoud A, Mohamed H (2008) Impact of biofertilizers application on improving wheat (T. aestivum L.) resistance to salinity. J Agric Biol Sci 4:520–528

    CAS  Google Scholar 

  • Moradi A, Tahmourespour A, Hoodaji M, Khorsandi F (2011) Effect of salinity on free-living diazotroph and total bacterial populations of two saline soils. Afr J Microbiol Res 5:144–148

    CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Narula N, Remus R, Deubel A, Granse A, Dudeja SS, Behl RK, Merbach W (2007) Comparison of the effective wheat root colonization by A. chroococcum and Panotea agglomeraus using serological techniques. Plant Soil Environ 53:167–176

    CAS  Google Scholar 

  • Naz I, Bano A, Rehman B, Pervaiz S, Iqbal M, Sarwar A, Yasmin F (2012) Potential of Azotobacter vinelandii Khsr1 as bio-inoculant. Afr J Biotechnol 11:10368–10372

    CAS  Google Scholar 

  • Poljakoff-Mayber A, Somers GF, Werker E, Gallagher JL (1994) Seeds of Koteletzkya virginica (Malvaceae): their structure, germination and salt tolerance. Am J Bot 81:54–59

    Article  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant-growth promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2000) Competition for nodulation among rhizobia in legume-Rhizobium symbiosis. Indian J Microbiol 40:211–246

    Google Scholar 

  • Sindhu SS, Lakshminarayana K, Singh D (1994) Expression of hydrogenase activity in Azotobacter chroococcum and its possible role in crop productivity. Indian J Expt Biol 32:423–426

    CAS  Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer-Wien, NewYork, pp 195–235

    Chapter  Google Scholar 

  • Sindhu SS, Rakshiya YS, Sahu G (2009) Biological control of soilborne plant pathogens with rhizosphere bacteria. Pest Technol 3:10–21

    Google Scholar 

  • Singh SS, Lakshminarayana K (1982) Survival and competitive ability of ammonia excreting and non-ammonia excreting Azotobacter chroococcum strains in sterile soil. Plant Soil 69:79–84

    Article  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916

    Article  CAS  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    Google Scholar 

  • Verma S, Kumar V, Narula N, Merbach W (2001) Studies on in vivo production of antimicrobial substances by A. chroococcum isolates/mutants. J Plant Dis Protect 108:152–165

    CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe parternerships to improve biomass production and remediation. Trends Biotech 27:591–598

    Article  CAS  Google Scholar 

  • Wu CH, Bernard SM, Anderson GL, Chen W (2009) Developing microbe-interactions for applications in plant growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbiol Biotechnol 2:428–440

    Article  CAS  Google Scholar 

  • Yang CH, Chai Q, Huang GB (2010) Root distribution and yield responses of wheat/maize intercropping to alternate irrigation in the arid areas of northwest china. Plant Soil Environ 56:253–262

    CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2008) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Sindhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhary, D., Narula, N., Sindhu, S.S. et al. Plant growth stimulation of wheat (Triticum aestivum L.) by inoculation of salinity tolerant Azotobacter strains. Physiol Mol Biol Plants 19, 515–519 (2013). https://doi.org/10.1007/s12298-013-0178-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-013-0178-2

Keywords

Navigation