Skip to main content

Identification of salt treated proteins in sorghum using gene ontology linkage

Abstract

Sorghum bicolor (L.) is an important crop of arid and semi arid zones with most of its varieties tolerant to drought, heat and salt stress. Functional identification of many salt tolerant proteins has been reported in Arabidopsis, rice and other plants, however only little functional information has been predicted in sorghum till date. A 2-D gel electrophoresis based proteomic approach with MALDI-TOF mass spectrometer was utilized to analyze the salt stress response of sorghum. Major changes in protein complement were observed at 200 mM NaCl in hydroponic culture after 96 h of salt-stress. Highly expressed five proteins were excised for functional identification. We developed shortest path (SP) analysis based method on Gene Ontology (GO) hierarchy using sum of GO-term’s semantic similarities. In this study, we observed that majority of expressed proteins belonged to the functional category of energy production and conversion, signal transduction mechanisms and ribosome maturation. These identified functions suggest a distinct mechanism of salt-stress adaptation in sorghum plant. The proposed method in this paper potentially has great importance to further understanding of newly identified proteins that can help in plant development.

This is a preview of subscription content, access via your institution.

Fig 1
Fig 2

Abbreviations

GO:

Gene Ontology

PPI:

Protein-protein interaction

SP:

Shortest path

MICA:

Most informative common ancestor

BP:

Biological process

CC:

Cellular component

MF:

Molecular function

Pfam:

Protein family

References

  1. Amme S, Matros A, Schlesier B, Mock HP (2006) Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J Exp Bot 57:1537–1546

    CAS  Article  PubMed  Google Scholar 

  2. Bairoch A, Apweiler R, Wu CH, Winona C, Barker WC, Boeckmann B, Ferro S, Gasteiger E et al (2005) The universal protein resource (UniProt). Nucleic Acids Res 33:D154–D159

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Jones SG, Khanna A, Marshall M et al (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Blackshear PJ (1984) Systems for polyacrylamide gel electrophoresis. Methods Enzymol 104:237–255

    CAS  Article  PubMed  Google Scholar 

  5. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–62

    CAS  Article  PubMed  Google Scholar 

  6. Brotman Y, Riewe D, Lisec J, Meyer RC, Willmitzer L, Altmann T (2011) Identification of enzymatic and regulatory genes of plant metabolism through QTL analysis in Arabidopsis. J Plant Physiol 168:1387–1394

    CAS  Article  PubMed  Google Scholar 

  7. Buza TJ, McCarthy FM, Burgess SC (2007) Experimental-confirmation and functional-annotation of predicted proteins in the chicken genome. BMC Genomics 8:425–434

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    CAS  Article  Google Scholar 

  9. Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810

    CAS  Article  PubMed  Google Scholar 

  10. Cokus S, Mizutani S, Pellegrini M (2007) An improved method for identifying functionally linked proteins using phylogenetic profiles. BMC Bioinformatics 8:S7–S18

    Article  PubMed  PubMed Central  Google Scholar 

  11. Damerval C, Vienne DD, Zivy M, Thiellement H (1986) Technical improvements in two-imensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    CAS  Article  Google Scholar 

  12. Diedhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8:49–61

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dong Q, Schlueter SD, Brendel V (2004) PlantGDB, plant genome database and analysis tools. Nucleic Acids Res 32:D354–D359

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Friedberg I (2006) Automated protein function prediction-the genomic challenge. Brief Bioinform 7:225–242

    CAS  Article  PubMed  Google Scholar 

  15. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  Article  PubMed  Google Scholar 

  16. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  Article  PubMed  Google Scholar 

  17. Gramene release 34b (http://www.gramene.org/Sorghum_bicolor/Info/Index)

  18. Gu H, Zhu P, Jiao Y, Meng Y, Chen M (2011) PRIN: a predicted rice interactome network. BMC Bioinform 12:161–173

    Article  Google Scholar 

  19. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–261

    CAS  Article  PubMed  Google Scholar 

  20. Hase Y, Yokoyama S, Muto A, Himeno H (2009) Removal of a ribosome small subunit-dependent GTPase confers salt resistance on Escherichia coli cells. RNA 15:1766–1774

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Hu P, Jiang H, Emili A (2010) Predicting protein functions by relaxation labelling protein interaction network. BMC Bioinform 11:S64–S71

    Article  Google Scholar 

  22. Huala E, Dickerman AW, Hernandez MG, Weems D, Reiser L, LaFond F, Hanley D, Kiphart D et al (2001) The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29:102–105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Huynen M, Snel B, Lathe W 3rd, Bork P (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res 10(8):1204–1210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Isokpehi RD, Simmons SS, Cohly HHP, Ekunwe SIN, Begonia GB, Ayensu WK (2011) Identification of drought-responsive universal stress proteins in viridiplantae. Bioinform Biol Insights 5:41–58

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Jain S, Bader GD (2010) An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology. BMC Bioinform 11:562–575

    Article  Google Scholar 

  26. Jaiswal P (2011) Gramene database: a hub for comparative plant genomics. Methods Mol Biol 678:247–275

    CAS  Article  PubMed  Google Scholar 

  27. Jiang JJ, Conrath DW (1997) Semantic similarity based on corpus statistics and lexical taxonomy. Proc ROCLING X Taiwan 19-33.

  28. Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, Cantor CR, Kasif S (2004) Whole-genome annotation by using evidence integration in functional linkage networks. Proc Natl Acad Sci USA 101:2888–2893

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Lee BJ, Shin MS, Oh YJ, Oh HS, Ryu KH (2009) Identification of protein functions using a machine-learning approach based on sequence-derived properties. Proteome Sci 7:27–45

    Article  PubMed  PubMed Central  Google Scholar 

  31. Letovsky S, Kasif S (2003) Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19:i197–i204

    Article  PubMed  Google Scholar 

  32. Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    CAS  Article  PubMed  Google Scholar 

  33. Mall TK, Dweikat I, Sato SJ, Neresian N, Xu K, Ge Z, Wang D, Elthon T et al (2011) Expression of the rice CDPK-7 in sorghum: molecular and phenotypic analyses. Plant Mol Biol 75:467–479

    CAS  Article  PubMed  Google Scholar 

  34. Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–81

    CAS  Article  PubMed  Google Scholar 

  36. Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58:507–520

    CAS  Article  PubMed  Google Scholar 

  37. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  Article  PubMed  Google Scholar 

  38. Pesquita C, Faria D, Bastos H, Ferreira AE, Falcao AO, Couto FM (2008) Metrics for GO based protein semantic similarity: a systematic evaluation. BMC Bioinform 9:S5–S20

    Article  Google Scholar 

  39. Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8:1757–64

    CAS  Article  PubMed  Google Scholar 

  40. Qin Y, Li X, Guo M, Deng K, Lin J, Tang D, Guo X, Liu X (2008) Regulation of salt and ABA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis. Sci China C Life Sci 51:391–401

    CAS  Article  PubMed  Google Scholar 

  41. Resnik P (1999) Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res 11:95–130

    Google Scholar 

  42. Roberto A, Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought-and salt-tolerant plants result from overexpression of the AVP1 H1-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  Google Scholar 

  43. Saghatelian A, Cravatt BF (2005) Assignment of protein function in the postgenomic era. Nature Chem Biol 1:130–142

    CAS  Article  Google Scholar 

  44. Schug J, Diskin S, Mazzarelli J, Brunk BP, Stoeckert-Jr CJ (2002) Predicting gene ontology functions from ProDom and CDD protein domains. Genome Res 12:648–655

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404

    CAS  Article  PubMed  Google Scholar 

  46. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    CAS  Article  PubMed  Google Scholar 

  48. Swami AK, Alam SI, Sengupta N, Sarin R (2011) Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. Environ Exp Bot 71:321–328

    CAS  Article  Google Scholar 

  49. Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    CAS  Article  PubMed  Google Scholar 

  50. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucl Acids Res 28:33–36

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  52. Todaka D, Nakashima K, Shinozaki K, Shinozaki KY (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5:6–25

    Article  PubMed  PubMed Central  Google Scholar 

  53. Turanalp ME, Can T (2008) Discovering functional interaction patterns in protein-protein interaction networks. BMC Bioinformatics 9:276–293

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25:1158–1164

    CAS  Article  PubMed  Google Scholar 

  55. Wheeler DL, Smith-White B, Chetvernin V, Resenchuk S, Dombrowski SM, Pechous SW, Tatusova T, Ostell J (2005) Plant genome resources at the national center for biotechnology information. Plant Physiol 138:1280–1288

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Yu G, Li F, Qin Y, Bo X, Yibo W, Wang S (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 26:976–978

    CAS  Article  PubMed  Google Scholar 

  57. Zdobnov EM, Apweiler R (2001) InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    CAS  Article  PubMed  Google Scholar 

  58. Zhang X, Liu S, Takano T (2008) Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotechnol Lett 30:1289–1294

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vinay Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(DOC 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sekhwal, M.K., Swami, A.K., Sarin, R. et al. Identification of salt treated proteins in sorghum using gene ontology linkage. Physiol Mol Biol Plants 18, 209–216 (2012). https://doi.org/10.1007/s12298-012-0121-y

Download citation

Keywords

  • Protein identification
  • 2-D Gel electrophoresis
  • Gene ontology
  • Salt-stress
  • Sorghum bicolor