Skip to main content

Micropropagation of Araucaria excelsa R. Br. var. glauca Carrière from orthotropic stem explants


The objectives of the present work were in vitro propagation of Araucaria excelsa R. Br. var. glauca Carrière (Norfolk Island pine) with focus on the evaluation of the mean number of shoots per explant (MNS/E) and mean length of shoots per explants (MLS/E) produced by different parts of the orthotropic stem of A. excelsa R. Br. var. glauca in response to plant growth regulators. Norfolk Island pine axillary meristems responded very well to the 2-iso-pentenyl adenine (2iP) and thidiazuron (TDZ) levels. Explants taken from stem upper segments in the media containing 2iP had a higher MNS/E (3.47) and MLS/E (6.27 mm) in comparison to those taken from stem lower segments, which were 0.71 and 0.51 mm, respectively. Using 0.045 μM TDZ in the MS medium not only resulted in 4.60 MNS/E with 7.08 mm MLS/E but proliferated shoots showed a good performance as well. Investigating the best position of stem explant on mother plant as well as the best concentrations of growth regulators were performed which were useful for efficient micropropagation of this plant. Thirty three percent of explants were rooted in the MS medium containing 3 % sucrose, supplemented with 7.5 μM of both NAA and IBA for 2 weeks before transferring to a half strength MS medium without any growth regulator. Plantlets obtained were acclimatized and transferred to the greenhouse with less than 20 % mortality. This procedure considered the first successful report for regeneration and acclimatization of A. excelsa R. Br. var. glauca plantlet through main stem explants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2



2-iso-pentenyl adenine


Activated charcoal




Indole-3-butyric acid




Mean length of shoots per explant


Mean number of shoots per explant


Murashige and Skoog


α-naphthaleneacetic acid


Plant growth regulators




  1. Astarita LV, Floh IS, Handro W (2003) Changing in IAA, tryptophan and activity of soluble peroxidase associated with zygotic embryogenesis in Araucaria angustifolia (Brazilian pine). Plant Growth Regul 39:113–118

    CAS  Article  Google Scholar 

  2. Burrows GE (1987) Leaf axil anatomy in the Araucariaceae. Aust J Bot 35:631–640

    Article  Google Scholar 

  3. Burrows GE, Doley DD, Haines RJ, Nikles DG (1988) In vitro propagation of Araucaria cunninghamii and other species of the Araucariaceae via axillary meristems. Aust J Bot 36:665–676

    Article  Google Scholar 

  4. Burrows GE, Offord CA, Meagher PF, Ashton K (2003) Axillary meristems and the development of epicormic buds in Wollemi Pine (Wollemia nobilis). Ann Bot 92:835–844

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Campbell M, Brunner AM, Jones H, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154

    Google Scholar 

  6. Casanova E, Trillas MI, Moysset L, Vainston A (2005) Infuence of rol gene in floriculture. Biotechnol Advances 23:3–39

    CAS  Article  Google Scholar 

  7. Damiano C, Momticelli S (1998) In vitro fruit trees rooting by Agrobacterium rhizogenes wild type infection. Elect J Biotechnol 2:1–7

    Google Scholar 

  8. De Diego N, Montalbán IA, Fernández E, Moncaleán P (2008) In vitro regeneration of Pinus pinaster adult trees. Can J For Res 38:2607–2615

    Article  Google Scholar 

  9. De Diego N, Montalbán IA, Moncaleán P (2010) In vitro regeneration of adult Pinus sylvestris L. trees. South Afri J Bot 76:158–162

    Article  Google Scholar 

  10. Giri CC, Shyamkmar B, Anjaneylnu C (2004) Progresses in tissue culture, genetic transformation and application of biotechnology to trees: An overview. Trees 18:115–135

    Article  Google Scholar 

  11. Hanes RJ, de Fossard RA (1977) Propagation of hoop pine (Araucaria cunninghamii AIT.). Acta Hortic 78:297–302

    Article  Google Scholar 

  12. Hartmann HT, Kester DE, Davies FT, Geneve RL (2011) Plant propagation: principles and practices. Prentice Hall, Upper Saddle River, NJ. USA. 928p

  13. Holefors A, Xue ZT, Welander M (1998) Transformation of the apple rootstock M26 with the rolA gene and its influence on growth. Plant Sci 136:69–78

    CAS  Article  Google Scholar 

  14. Holthusen K (1940) Untersuchungen Über das Vorkommen and den Zustand der Achselknospen bei den höeren Pflanzen. Planta 30:590–635

    Article  Google Scholar 

  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    CAS  Article  Google Scholar 

  16. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nature Rev 12:111–122

    CAS  Article  Google Scholar 

  17. Sarmast MK, Salehi H, Khosh-Khui M (2009) Using plagiotropic shoot explant in tissue culture of Araucaria excelsa R. Br. var. glauca. Adv Environ Biol 3:191–194

    CAS  Google Scholar 

  18. Sarmast MK, Salehi H, Khosh-Khui M (2011) Nano silver treatment is effective in reducing bacterial contamination of Araucaria excelsa R. Br. var. glauca explants. Acta Biol Hung 62:477–484

    CAS  Article  PubMed  Google Scholar 

  19. Sarmast MK, Salehi H, Ramzani A, Abolimoghadam AA, Niazi A, Khosh-Khui M (2012) RAPD fingerprint to appraise the genetic fidelity of in vitro propagated Araucaria excelsa R. Br. var. glauca plantlets. Mol Biotechnol 50:181–188

    CAS  Article  PubMed  Google Scholar 

  20. Sehgal L, Sehgal OP, Khosla PK (1989) Micropropagation of Araucaria columnaris Hook. Ann Sci For 46:158–160

    Article  Google Scholar 

  21. Steiner N, Santa-Catarina C, Silveira V, Floh EIS, Guerra MP (2007) Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryonic cultures. Plant Cell Tiss Org Cult 89:55–62

    CAS  Article  Google Scholar 

  22. Traore A, Xing Z, Bonser A, Carlson J (2005) Optimizing a protocol for sterilization and in vitro stablishment of vegetative bud from mature Douglas fir trees. HortScience 40:1464–1468

    Google Scholar 

  23. Villalobos-Amador E, Rodríguez-Hernández G, Pérez-Molphe-Balch E (2002) Organogenesis and Agrobacterium rhizogenes-induced rooting in Pinus maximartinezii Rzedowsky and P. pinceana Gordon. Plant Cell Rep 20:779–785

    CAS  Article  Google Scholar 

  24. Zdravkovic-Korac SY, Muhovski P, Druart DC, Radojevic AL (2004) Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep 22:698–704

    CAS  Article  PubMed  Google Scholar 

  25. Zhu LH, Wu XQ, Qu HY, Ji J, Ye JR (2010) Micropropagation of Pinus massoniana and micorrhiza formation in vitro. Plant Cell Tiss Org Cult 102:121–128

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mostafa Khoshhal Sarmast.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarmast, M.K., Salehi, H. & Khosh-Khui, M. Micropropagation of Araucaria excelsa R. Br. var. glauca Carrière from orthotropic stem explants. Physiol Mol Biol Plants 18, 265–271 (2012).

Download citation


  • Abnormality
  • Araucaria excelsa R. Br. var. glauca
  • Axillary meristems
  • Orthotropic stems
  • Proliferation
  • Topophysis