Skip to main content

Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum)

Abstract

Pseudomonas isolates obtained from the rhizosphere of chickpea (Cicer arietinum L.) and green gram (Vigna radiata) were found to produce significant amount of indole acetic acid (IAA) when grown in a LB medium broth supplemented with L-tryptophan. Seed bacterization of chickpea cultivar C235 with different Pseudomonas isolates showed stunting effect on the development of root and shoot at 5 and 10 days of seedling growth except the strains MPS79 and MPS90 that showed stimulation of root growth, and strains MPS104 and MRS13 that showed shoot growth stimulation at 10 days. Exogenous treatment of seeds with IAA at 0.5 and 1.0 μM concentration caused similar stunting effects on root and shoot growth compared to untreated control both at 5 and 10 days of observation, whereas higher concentration of IAA (10.0 μM) inhibited the growth of seedlings. Coinoculation of chickpea with IAA-producing Pseudomonas strains increased nodule number and nodule biomass by Mesorhizobium sp. Cicer strain Ca181. The plant dry weights of coinoculated treatments showed 1.10 to 1.28 times increase in comparison to Mesorhizobium-inoculated plants alone and 3.62 to 4.50 times over uninoculated controls at 100 days of plant growth. The results indicated the potential usefulness of allelopathic rhizosphere bacteria and growth-mediating IAA in enhancement of nodulation and stimulation of plant growth in chickpea.

This is a preview of subscription content, access via your institution.

References

  1. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizosphere bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    PubMed  Article  CAS  Google Scholar 

  2. Alstrom S (1992) Saprophytic soil microflora in relation to yield reductions in soil repeatedly cropped with barley (Hordeum vulgare L.). Biol Fertil Soils 14:145–150

    Article  Google Scholar 

  3. Arshad M, Frankenberger WT Jr (1992) Microbial production of plant growth regulators. In: Metting FB Jr (ed) Soil microbial ecology, applications in agricultural and environmental management. Dekker, New York, pp 27–32

    Google Scholar 

  4. Astrom B, Gustafsson A, Gerhardson B (1993) Characteristics of a plant deleterious rhizosphere pseudomonad and its inhibitory metabolite(s). J Appl Bacteriol 74:20–28

    Google Scholar 

  5. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  6. Bar T, Okon Y (1992) Induction of indole-3-acetic acid synthesis and possible toxicity of tryptophan in Azospirillum brasilense Sp7. Symbiosis 13:191–198

    CAS  Google Scholar 

  7. Barazani O, Friedman J (1999) Is IAA the major growth factor secreted from plant growth mediating bacteria? J Chem Ecol 25:2397–2406

    Article  CAS  Google Scholar 

  8. Benizri E, Boudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574

    Article  Google Scholar 

  9. Berggren I, van Vuurde JWL, Martensson AM (2001) Factors influencing the effect of deleterious Pseudomonas putida rhizobacteria on initial infection of pea roots by Rhizobium leguminosarum bv. viciae. Appl Soil Ecol 17:97–106

    Article  Google Scholar 

  10. Bolton H Jr, Elliott LF (1989) Toxin production by a rhizobacterial Pseudomonas sp. that inhibits wheat root growth. Plant Soil 114:269–278

    Article  CAS  Google Scholar 

  11. Bolton H Jr, Elliott LF, Turco RF, Kennedy AC (1990) Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colonizing Pseudomonas sp. and effects on plant growth. Plant Soil 123:121–124

    Google Scholar 

  12. Dashti N, Zhang F, Hynes RK, Smith DL (1997) Application of plant growth promoting rhizobacteria to soybean [Glycine max (L.) Merr.] increases protein and dry matter yield under short season conditions. Plant Soil 188:33–41

    Article  CAS  Google Scholar 

  13. de Freitas JR, Germida JJ (1990) Plant growth promoting rhizobacteria for winter wheat. Can J Microbiol 36:265–272

    Article  Google Scholar 

  14. Dubeikovsky AN, Mordukhova EA, Kochetkov VV, Polikarpova FY, Boronin AM (1993) Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol Biochem 25:1277–1281

    Article  Google Scholar 

  15. Gealy DR, Gurusiddaiah S, Ogg AG Jr (1996) Isolation and characterization of metabolites from Pseudomonas syringae strain and their phytotoxicity against certain weed and crop species. Weed Sci 44:383–392

    CAS  Google Scholar 

  16. Goel AK, Sindhu SS, Dadarwal KR (2001) Seed bacterization with fluorescent Pseudomonas enhances the synthesis of flavonoid-like compounds in chickpea (Cicer arietinum L.). Physiol Mol Biol Plants 6:195–198

    Google Scholar 

  17. Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195

    PubMed  Article  CAS  Google Scholar 

  18. Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1205

    PubMed  Article  CAS  Google Scholar 

  19. Heisey RM, Putnam AR (1986) Herbicidal effects of geldamycin and nigericin, antibiotics from Streptomyces hygroscopicus. J Nat Prod 49:859–865

    PubMed  Article  CAS  Google Scholar 

  20. Hirsch AM, Fang Y (1994) Plant hormones and nodulation: what is the connection? Plant Mol Biol 26:5–9

    PubMed  Article  CAS  Google Scholar 

  21. Holl FB, Chanway CP, Turkington R, Radley RA (1988) Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol Biochem 20:19–24

    Article  CAS  Google Scholar 

  22. Karen S, Udo B, Frank L, Dominique R (2001) Can simultaneous inhibition of seedling growth and stimulation of rhizosphere bacterial populations provide evidence for phytotoxin transfer from plant residues in the bulk soil to the rhizosphere of sensitive species? J Chem Ecol 27:807–829

    Article  Google Scholar 

  23. Kirkegaard JW, Munns R, James RA, Gardener PA, Angus JF (1993) Reduced growth and yield of wheat with conservation cropping. II. Soil biological factors limit under direct drilling. Aust J Agric Res 46:75–88

    Article  Google Scholar 

  24. Knight TJ, Langston-Unkeffer PJ (1988) Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen. Science 241:951–954

    PubMed  Article  CAS  Google Scholar 

  25. Lifshitz R, Kloepper JW, Kozlowski M (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395

    Article  Google Scholar 

  26. Loper JE, Schroth MN (1986) Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Plant Pathol 76:386–389

    CAS  Google Scholar 

  27. Mayer AM (1958) Determination of indole acetic acid by the Salkowsky reaction. Nature 182:1670–1671

    PubMed  Article  CAS  Google Scholar 

  28. Muller F, Deigele C, Ziegler H (1989) Hormonal interactions in the rhizosphere of maize (Zea mays L.) and their effects on plant development. Zournal Pflanzen Bordennk 152:247–254

    Article  Google Scholar 

  29. Nishijima F, Evans WR, Vesper SJ (1988) Enhanced nodulation of soybean by Bradyrhizobium in the presence of Pseudomonas fluorescens. Plant Soil 111:149–150

    Article  Google Scholar 

  30. Okon Y, Vanderleyden J (1997) Root associated Azospirillum species can stimulate plants. Am Soc Microbiol News 63:366–370

    Google Scholar 

  31. Palleroni NJ (1984) Family 1. Pseudomonadaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systemic bacteriology. Williams and Wilkins, Baltimore, pp 143–213

    Google Scholar 

  32. Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Article  CAS  Google Scholar 

  33. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    PubMed  Article  CAS  Google Scholar 

  34. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacterial interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  35. Prikryl Z, Vancura V, Wurst M (1985) Auxin formation by rhizosphere bacteria as a factor of root growth. Biol Plant 27:159–163

    Article  CAS  Google Scholar 

  36. Remans R, Bebee S, Manrique MB, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  37. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A Laboratory Manual, Cold Spring Harbor

    Google Scholar 

  38. Sarwar M, Kremmer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan compounds by deleterious rhizobacteria. Plant Soil 172:261–269

    Article  CAS  Google Scholar 

  39. Schippers AB, Bakker AW, Bakker PAHM (1987) Interaction of deleterious and beneficial microorganism and effect on cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  40. Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of plant growth in green gram (Vigna radiata). Biol Fertil Soils 29:62–68

    Article  CAS  Google Scholar 

  41. Sloger C (1969) Symbiotic effectiveness and nitrogen fixation in nodulated soybean. Plant Physiol 44:1666–1668

    PubMed  Article  CAS  Google Scholar 

  42. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signaling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    PubMed  Article  CAS  Google Scholar 

  43. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    PubMed  Article  CAS  Google Scholar 

  44. Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72:107–123

    Article  Google Scholar 

  45. Suzuki S, Yuxi H, Oyaizu H, He Y (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143

    PubMed  Article  CAS  Google Scholar 

  46. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    PubMed  Article  CAS  Google Scholar 

  47. Vincent JM (1970) A manual for the practical study of root nodule bacteria. International biological programme handbook 15. Blackwell Scientific Publisher, Oxford

    Google Scholar 

  48. Weller DM (2007) Pseudomonas biological control agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97:250–256

    PubMed  Article  Google Scholar 

  49. Xie H, Pasternack JJ, Glick BR (1996) Isolation and characterization of mutants of plant growth promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indole acetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  50. Yoshikawa M, Hirai N, Wakabayashi K, Sugizaki H, Iwamura H (1993) Succinic and lactic acids as plant growth promoting compounds produced by rhizospheric Pseudomonas putida. Can J Microbiol 39:1150–1154

    Article  CAS  Google Scholar 

  51. Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–459

    Article  Google Scholar 

  52. Zhang F, Dashti N, Hynes RK, Smith DL (1997) Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.] growth and physiology at suboptimal root zone temperatures. Ann Bot 79:243–249

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satyavir S. Sindhu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malik, D.K., Sindhu, S.S. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17, 25–32 (2011). https://doi.org/10.1007/s12298-010-0041-7

Download citation

Keywords

  • Indole-acetic acid (IAA)
  • Pseudomonas sp.
  • Mesorhizobium sp. Cicer
  • Seedling growth
  • Nodulation
  • Chickpea