Skip to main content
Log in

Acclimatory response to hydrogen peroxide and glutathione under salt-boron stress through their impact on mineral nutrition and antioxidant defense system in pigeonpea (Cajanus cajan L.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Investigations were carried out on a salt tolerant (Manak, H77-216) and a comparatively salt sensitive (ICPL 88039) genotypes of pigeonpea (Cajanus cajan L. Millsp.) under NaCl, B and NaCl + B stress to examine the acclimatory response to H2O2, glutathione and H2O2 + glutathione through their effect on mineral nutrition, morpho-physiological parameters and antioxidant defense system. Both B and NaCl alone and their combinations had deleterious effect on dry biomass of plumule, enhanced relative stress injury (RSI), lipid peroxidation with concomitant increase in Na, Cl and B contents. However it did not bear any correlation with osmotic potential of plumule and K contents. Antioxidative enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POX) and glutathione reductase (GR) also decreased with salt, B and salt + B treatments. However contents of H2O2 enhanced and that of ascorbate declined under aforementioned treatments. These injurious effects are partially alleviated by exogenous application of H2O2; glutathione (GSH) and H2O2 + GSH treatments. The role of H2O2 and GSH in the present study is suggestive of triggering multifunctional signal transduction in plant defense mechanisms to prevent cellular oxidation, membrane injury, lipid peroxidation and protein enzyme inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi HE (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzyme analysis. Verlag Chemie Wenhein, pp 273-286

  • Agarwal S, Sairam RK, Srivastava GC, Tyagi A, Meena RC (2005) Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci 169:559–570

    Article  CAS  Google Scholar 

  • Alpaslan M, Gunes A (2001) Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil 236:123–128

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Bansal S (1999) Physiological changes in wheat (Triticum aestivum L.) under salinity-boron interaction. M.Sc. Thesis, CCS Haryana Agricultural University, Hisar, India

  • Bingham FT (1982) Boron. In: Page AL (ed) Methods of soil analysis, Part 2. Agronomy 9: 431–447

  • Bingham FT, Strong JE, Rhoades JD, Karen R (1987) Effect of salinity and varying boron concentrations on boron uptake and growth of wheat. Plant Soil 97:345–351

    Article  CAS  Google Scholar 

  • Bishnoi S (2003) Physiological and biochemical investigations on boron toxicity under salt stress and its alleviation by calcium in pigenonpea (Cajanus cajan L. Millsp.). Ph.D. Thesis, CCS Haryana Agricultrual University, Hisar, India

  • Bliss RD, Platt-Aloia KA, Thomson WW (1984) Effect of salt on cell membranes of germinating seeds. California Agric 34:24–25

    Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Cartwright B, Zarcinas BA, Mayfield AH (1984) Toxic concentration of boron in a red-brown earth at Gladstone, South Australia. Aust J Soil Res 22:261–272

    Article  CAS  Google Scholar 

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defense system in soybean root nodules. Aus J Plant Physiol 25:665–671

    Article  CAS  Google Scholar 

  • Corpas F, Gomez JM, Hernandez JA, Del Rio JA (1993) Metabolism of activated oxygen in leaf peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride. J Plant Physiol 141:160–165

    CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and cataase during thermo-tolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • De Gara L, De Pinto MC, Tommasi F (2003) The antioxidant system vis-à-vis reactive oxygen species during plant pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci Limerick 135:1–9

    Article  CAS  Google Scholar 

  • Doila MYAA, Datta KS, Angrish R, Dayal J, Kumari P, Kumar B (1998a) Mineral ion uptake characteristics during boron toxicity under saline conditions in broad bean (Vicia faba L.). Plant Physiol Biochem 25:1–8

    Google Scholar 

  • Doila MYAA, Kumar B, Dayal J, Angrish R, Datta KS (1998b) Effect of salinity and boron on germination and early seedling growth of broad bean Vicia faba L. Haryana Agric Univ J Res 28:63–72

    Google Scholar 

  • Elstner EF, Oßwald WF (1994) Mechanism of oxygen activation in plant stress. Proc R Acad Sci Edinburgh 102b:131–154

    Google Scholar 

  • Evans WR, Fuchsman DE, Calveri HE, Pyati PV, Alter GM, Subha Rao NS (1999) Bacteriochlorophyll and photosynthetic reaction centres in Rhizoium strain BTA II. Appl Environ Microbiol 56:3445–3449

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lopen-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Geisler M, Kleczkowski LA, Karpinski S (2006) A universal algorithm for genome-wide in silico identificationof biologically significant gene promoter putative cisregulatory-elements; identification of new elements forreactive oxygen species and sucrose signaling in Arabidopsis. Plant J 45:384–398

    Article  CAS  PubMed  Google Scholar 

  • Goldberg DM, Spooner RJ (1983) Glutathione reductase. In: Bergmeyer HU, Bergmeyer J, Grabi M (eds) Methods of enzymatic analysis, vol III. pp 258–265

  • Gorham G, Mc Donnel E, Wyn Jones RG (1984) Salt tolerance in triticaceae. I. Leymus sabulosus. J Exp Bot 35:1200–1209

    Article  CAS  Google Scholar 

  • Grill D, Tausz M, De Kok LJ (2001) Significance of glutathione to plant adaptation to the environment. Kluwer Academic Publishers, Dordrecht, ISBN 1-4020-0178-9

  • Gueta-Dahan Y, Yanin Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–469

    Article  CAS  PubMed  Google Scholar 

  • Gupta UC, James YM, Campbell CA, Leyshon AJ, Nicholaichuk W (1985) Boron toxicity and deficiency: a review. Can J Soil Sci 65:381–409

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendan Press, Oxford, pp 446–489

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert H (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Mol Biol 51:463–469

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophy 125:189–198

    Article  CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  CAS  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimnez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and \( {\hbox{O}}_2^{{. - }}/{{\hbox{H}}_{{2}}}{{\hbox{O}}_{{2}}} \) production in the apoplast of pea leaves, its relation with salt induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  CAS  PubMed  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide function as a stress signal in plants. Bot Bull Acad Sin 46:1–10

    CAS  Google Scholar 

  • Jiang Y, Huang B (2001) Drought and heat stress injury to two cool reason turfgrasses in relation to antioxidant metabolisms and lipid peroxidation. Crop Sci 41:436–442

    Article  CAS  Google Scholar 

  • Karpinska B, Wingsle G, Karpinski S (2000) Antagonisticeffects of hydrogen peroxide and glutathione on acclimation to excess excitation energy in Arabidopsis. IUBMBLife 50:21–26

    CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska V, Wingsle G, Greissen G, Mullineaux P (1999) The role of hydrogen peroxide and antioxidants in systemic acclimation to photo-oxidative stress in Arabidopsis. In: Text book-Plant Responses to Environmental Stresses, pp 25–32

  • Keren R (1990) Reclamation of saline, sodic and boron-affected soils. In: Tanji KK (ed) Agricultural salinity assessment and management. American Society of Civil Engineers, New York, pp 410–431

    Google Scholar 

  • Komives T, Gullner G, Kiraly Z (1998) Role of glutathione and glutathione-related enzymes in response of plants to environmental stress. Ann NY Acad Sci 851:251–258

    Article  CAS  Google Scholar 

  • Kuiper PJC (1980) Functioning of plant cell membrances under saline conditions: membrane lipid composition and ATPases. In Staples RC, Toenniessen GH (eds) Salinity tolerance in plants—strategies for crop improvement. JohnWiley Co. Newyork, pp. 77–91.

  • Lauchli A (2002) Functions of boron in higher plants: recent advances and open questions. Plant Biol 4:190–192

    Article  CAS  Google Scholar 

  • Lee SKD (2006) Hot pepper response to interactive effects of salinity and boron. Plant Soil Environ 52(5):227–233

    Google Scholar 

  • Leopold AC, Willing RP (1980) Evidence for toxicity effects of salt on membranes. In: Staples RC, Toenniessen M (eds) Salinity tolerance in plants—strategies for crop improvement. JohnWiley Co. Newyork, pp. 67–76

  • Levine A (1999) Oxidative stress as a regulator of environmental responses in plants. In: Lerner HR (ed) Plant responses to environmental stresses from phytohormones to genome reorganization. Marcel Dekker, Inc., New York, Basel

    Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitivedisease resistance. Annu Rev Plant Physiol 121:245–257

    Google Scholar 

  • Manchanda HR, Sharma SK (1991) Boron tolerance in wheat in relation to soil salinity. J Agric Sci 116:17–21

    Article  CAS  Google Scholar 

  • Manchanda HR, Karwasra SP, Sharma HC (1993) Saline water, soil salinity and crop growth. In: Salinity Research in HAU. CCS Haryana Agricultural University, Hisar

  • Martínez-Ballesta MDC, Bastías E, Carvajal M (2008) Combined effect of boron and salinity on water transport: the role of aquaporins. Plant Signal Behav 3(10):844–845

    Google Scholar 

  • May MJ, Vernoux T, Leaver C, Montagu MV, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    Article  CAS  Google Scholar 

  • Mehta N, Bharti S (1983) Growth and metabolism of gram seedling under salt stress. Indian J Plant Physiol 26:322–325

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Volokita M (2004) Salinity up-regulates the anti-oxidative system in root mitochondria and peroxisomes of the wild salt tolerant tomato species Lycopercon pennelli. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nandwal AS, Godara M, Kamboj DV, Kundu BS, Mann A, Kumar B, Sharma SK (2000) Nodule functioning in trifoliate and pentafoliate mungbean genotypes as influenced by salinity. Biol Plant 43(3):459–462

    Article  CAS  Google Scholar 

  • Neill S, Desiken R, Clarke A, Hancock J (1999) H2O2 signaling in plant cells. In: Smallwood MF, Calvert CM, Bowlers DJ (eds) Text book. Plant responses to environmental stresses. pp 59–64

  • Neill S, Desikan R, Hancock J (2002a) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Clarke A, Hurst RD, Hancock J (2002b) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Ogawa K, Iwabuchi M (2001) A mechanism for promoting the germination of Zinia elegans seeds by hydrogen peroxide. Plant Cell Physiol 42:286–291

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression altered stomatal responses and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (APX 1)—deficient Arabidopsis plants. Plant J 34:187–203

    Article  CAS  PubMed  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and regulatory role of hydrogen peroxide. Plant Cell 6:65–74

    Article  CAS  PubMed  Google Scholar 

  • Rao KVGK, Agarwal MC, Singh OP, Oosterbaan RJ (1994) Reclamation and management of waterlogged saline soil. In: Rao KVGK (ed) Central Soil Salinity Research Institute, Karnal and CCS Haryana Agricultural University, Hisar, India

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  PubMed  Google Scholar 

  • Reid R (2007) Update on boron toxicity and tolerance in plants. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L (eds) Advances in plant and animal boron nutrition. Springer, Dordrecht, The Netherlands, pp 83–90

    Chapter  Google Scholar 

  • Rennenberg H (1982) Glutathione metabolism and possible bio-logical roles in higher plants. Phytochemistry 21:2771–2781

    Article  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Srivastava GC (2000) Induction of oxidative stress and antioxidant activity of hydrogen peroxide treatment in tolerant and susceptible wheat genotype. Biol Plant 43:381–386

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC (2001) Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. J Agric Crop Sci 186:63–70

    Article  CAS  Google Scholar 

  • Schopfer P (1966) Der Birifluss von Phytochrom auf die sationharen Kouzeutration en Von Ascorbin Saure und Lehydmas corbiusaurz beim Senkeinling (Sinspio albg L.). Planta 69:158–177

    Article  CAS  Google Scholar 

  • Sheoran IS (1975) Effect of salinity on some important aspects of plant metabolism. Ph.D. Thesis, Haryana Agricultural University, Hisar, India

  • Slesak I, Karpinska B, Surówka E, Miszalski Z, Karpinski S (2003) Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol 44:573–581

    Article  CAS  PubMed  Google Scholar 

  • Slesak I, Libik M, Karpinska B, Karpinski S, Miszalsk Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54:39–50

    CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    Article  CAS  Google Scholar 

  • Srivalli B, Chinnusamy V, Khanna-Chopra R (2003) Antioxidant defense in response to abiotic stresses in plants. J Plant Biol 30:121–139

    Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses; a delicate balance between signaling destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • USDA (1954) Diagonosis and improvement iof saline and alkali soils. Agriculture handbook no. 60. US Govt. Printing office, Washington DC

  • Vaidyanathan H, Shivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl stressed rice (Oryza sativa L.)—differential response in salt tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Venacker H, Carver TLW, Foyer CH (1998) Pathogen induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    Article  Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  Google Scholar 

  • Yadav OP, Manchanda HR (1982) Effect of boron applications on mustard on a sierozem sandy soil. J Indian Soc Soil Sci 30:408–410

    CAS  Google Scholar 

  • Yu C-W, Murphy TM, Lin C-H (2003) Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to ICAR, New Delhi for financial assistance in the form of an adhoc research project entitled, "Physiological and biochemical basis of boron toxicity in important crops under salinity stress."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Angrish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chawla, S., Goyal, S.C., Angrish, R. et al. Acclimatory response to hydrogen peroxide and glutathione under salt-boron stress through their impact on mineral nutrition and antioxidant defense system in pigeonpea (Cajanus cajan L.). Physiol Mol Biol Plants 16, 295–304 (2010). https://doi.org/10.1007/s12298-010-0032-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-010-0032-8

Keywords

Navigation