Skip to main content

Simple yet stringent screening methodologies for evaluation of putative transformants for abiotic stress tolerance: salt and cadmium stress as a paradigm


Rigorous and stringent screening methodologies to select transformants at both seedling and plant level under cadmium or NaCl stress were developed. At seedling level, two screening strategies were standardized. One involved germination on filter paper/agar in the presence of either CdCl2 (125 μM) or NaCl (350–450 mM) for 9 days and selection of tolerant putative transformants. The other involved germination of the seedlings on soilrite by irrigation of 450 mM NaCl. Further, at plant level, in vitro evaluation for stress tolerance involved a simple leaf senescence bioassay. Combination of the seedling and plant level screening strategies would result in the initial identification of promising transformants for further analysis.

This is a preview of subscription content, access via your institution.


  1. Arnon DI (1949). Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiol. 24: 1–15.

    CAS  Article  PubMed  Google Scholar 

  2. Almansouri M, Kinet JM and Luttus S (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231: 245–256.

    Article  Google Scholar 

  3. Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL and Wang CM (2009). Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci. 176: 232–240.

    CAS  Article  Google Scholar 

  4. Brini F, Hanin M, Imed Mezghani, Berkowitz GA and Masmoudi K (2007). Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J. Exp. Bot. 58(2): 301–308.

    CAS  Article  PubMed  Google Scholar 

  5. Chen H, An R, Tang J-H, Cui X-H and Hao F-S (2007). Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed. 19: 215–225.

    CAS  Article  Google Scholar 

  6. He C, Shen G, Pasapula V, Luo J, Venkataramani S, Qiu X, Kuppu S, Kornyeyev D, Holaday AS, Auld D, Blumwald E and Zhang H (2007). Ectopic expression of AtNHX1 in cotton (Gossypium hirsutum L.) increases proline content and enhances photosynthesis under salt stress conditions. Mol. Biol. Physiol. 11: 266–274.

    CAS  Google Scholar 

  7. Kumar MA, Reddy KN, Sreevathsa R, Ganeshan G and Udayakumar M (2009) Towards crop improvement in bell pepper (Capsicum annuum L.) by a tissue culture independent Agrobacterium mediated in planta approach. Sci. Horti., 119: 362–370.

    CAS  Article  Google Scholar 

  8. Kurth E, Jensen A and Epstein E (1986). Resistance of fully imbibed tomato seeds to very high salinities. Plant Cell Environ. 9: 667–676.

    CAS  Article  Google Scholar 

  9. Munns R (2002). Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239–250.

    CAS  Article  PubMed  Google Scholar 

  10. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T and Hayakawa T (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett. 532: 279–282.

    CAS  Article  PubMed  Google Scholar 

  11. Saleki R, Young, PG and Lefebvre DD (1993). Mutants of Arabidopsis thaliana capable of germination under saline conditions. Plant Physiol. 101: 839–845.

    CAS  PubMed  Google Scholar 

  12. Sanan-Mishra N, Pham XH, Sopory SK and Tuteja N (2005). Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102: 509–514.

    CAS  Article  PubMed  Google Scholar 

  13. Singla-Pareek SL, Reddy MK and Sopory SK (2003). Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc. Natl Acad. Sci. USA 100: 14672–14677.

    CAS  Article  PubMed  Google Scholar 

  14. Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK and Sopory SK (2006). Transgenic Tobacco Overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol. 140: 613–623.

    CAS  Article  PubMed  Google Scholar 

  15. Verslues PE, Agarwal M, Katiyar-Agarwal, S, Zhu K and Zhu JK (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45: 532–539.

    Article  Google Scholar 

  16. Yamaguchi T and Blumwald E (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 10(12): 616–620.

    Article  Google Scholar 

  17. Zhao F, Wang Z, Zhang Q, Zhao Y and Zhang H (2006). Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J. Plant Res. 119: 95–114.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rohini Sreevathsa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Awaji, S.M., Nagaveni, V., Prashantkumar et al. Simple yet stringent screening methodologies for evaluation of putative transformants for abiotic stress tolerance: salt and cadmium stress as a paradigm. Physiol Mol Biol Plants 16, 115–121 (2010).

Download citation


  • Abiotic stress
  • evaluation
  • methodology
  • transgenics