Advertisement

Physiology and Molecular Biology of Plants

, Volume 15, Issue 2, pp 169–173 | Cite as

RAPD based genetic variability among cultivated varieties of Aonla (Indian Gooseberry, Phyllanthus emblica L.)

  • A. K. Chaurasia
  • V. R. Subramaniam
  • Bal Krishna
  • P. V. Sane
Short Communication

Abstract

Aonla, the Indian Gooseberry (Phyllanthus emblica) is widely grown in India due to its neutraceutical properties. Investigations on the use of RAPD markers enabled us to estimate genetic variability among commercially cultivated varieties. This study also enabled us to distinguish these varieties using a set of four decamer primers, which was otherwise difficult by using morphological markers. Cluster analysis revealed three different groups of varieties directly associated to their place of origin. RAPD markers were also able to differentiate varieties of same origin or even selection from same parents. This information can be used for identification of varieties and further crop improvement programme.

Key words

Aonla Phyllanthus emblica RAPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmawi MZ, Kankaanranta H, Moilanen E and Vapaatalo H (1992). Anti-inflammatory activities of Emblica officinalis G leaf extracts. J. Pharm. Pharmacol. 45: 581–584.Google Scholar
  2. Balasubramaniam G, Sarathi M, Rajesh Kumar, Sahul S and Hameed AS (2007). Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp. Aquaculture 263: 15–19.CrossRefGoogle Scholar
  3. Basa SC and Shrinivasulu C (1987). Constituents of leaves of Phyllanthus emblica Linn. Indian J. Nat. Prod. 3: 13–14.Google Scholar
  4. Besse P, Taylor G, Carroll B, Berding N, Burner D and McIntyre CL (1998). Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104: 143–153.PubMedCrossRefGoogle Scholar
  5. Bradeen JM and Havey MJ (1995). Randomly amplified polymorphic DNA in bulb onion and its use to assess inbred integrity. J. Am. Soc. Hortic. Sci. 120: 752–758.Google Scholar
  6. Calixto JB, Santos ARS, Filho VC and Tunes RA (1998). A review of the plants of the genus Phyllanthus: Their chemistry, pharmacology, and therapeutic potential. J. Med. Biol. Res. 31: 225–258.Google Scholar
  7. Chatterjee M and Sil PC (2007). Protective role of Phyllanthus niruri against nimusulide induced hepatic damage. Ind. J. Clin. Biochem. 22: 109–116.CrossRefGoogle Scholar
  8. Eiadthong W, Yonemori K, Sugiura A, Utsunomiya N and Subhadrabandhu S (1999). Identification of mango cultivars of Thailand and evaluation of their genetic variation using the amplified fragments by simple sequence repeat -(SSR-) anchored primers. Scienti. Horti. 82: 57–66.CrossRefGoogle Scholar
  9. Ghosal S, Tripathi VK and Chauhan S (1996). Active constituents of Emblica officinalis: Part I. The chemistry and antioxidant activity of two new hydrolysable tannins, emblicanin A and B. Indian J. Chem. 35: 941–948.Google Scholar
  10. Ihantola-Vormisto A, Summanen J, Kankaanranta H, Vuorela H, Asmawi MZ and Moilanen E (1997). Antiinflammatory activity of extracts from leaves of Phyllanthus emblica. Planta Med. 63: 518–524.PubMedCrossRefGoogle Scholar
  11. Khanuja SPS, Shasani AK, Daroker MP and Kumar S (1998). DNA Fingerprinting of plant genetic resources: The need of time. J. Med. Arom. Pl. Sci. 20: 348–351.Google Scholar
  12. Koveza OV and Gostimskii SA (2005). Development and study of SCAR markers in pea (Pisum sativum L.). Genetica 41: 1522–1530.Google Scholar
  13. Kumar SG, Nayaka H, Dharmesh SM and Salimath PV (2006). Free and bound phenolic antioxidants in amla (Emblica officinalis) and turmeric (Curcuma longa). J. Food. Comp. Anal. 19: 446–452.CrossRefGoogle Scholar
  14. Laumas KR and Seshadri TR (1958). Chemical components of the bark of Phyllanthus emblica. J. Sci. Ind. Res. (India) 17: 167–168.Google Scholar
  15. Lowe AJ, Gillies AC, Wilson J and Dawson IK (2000). Conservation genetics of bush mango from central/west Africa: implications from random amplified polymorphic DNA analysis. Mol Ecol. 9: 831–841.PubMedCrossRefGoogle Scholar
  16. Mathur R, Sharma A, Dixit VP and Varma M (1996). Hypolipidaemic effect of fruit juice of Emblica officinalis in cholesterol-fed rabbits. J. Ethnopharmacol. 50: 61–68.PubMedCrossRefGoogle Scholar
  17. Neetu D, Yogesh B, Anju B, Dipti P, Pauline T and Sharma SK (2002). Cyto-protective and immunomodulating properties of Amla (Emblica officinalis) on lymphocytes: an in vitro study. J Ethnopharmacol. 81: 5–10.PubMedCrossRefGoogle Scholar
  18. Nei M (1972). Genetic distance between populations. Am. Nat. 106: 283–292.CrossRefGoogle Scholar
  19. Pathak RK (2003). Status report on Genetic Resources of Indian Gooseberry — Aonla (Emblica officinalis G) in South and South East Asia. IBPGRI, 26.Google Scholar
  20. Pillay PP and Iyer KM (1958). A chemical examination of Emblica officinalis, Gaertn. Curr. Sci. 3: 266–267.Google Scholar
  21. Salhi-Hannachi A, Chatti K, Saddoud O, Mars M, Rhouma A, Marrakchi M and Trifi M (2006). Genetic diversity of different Tunisian fig (Ficus carica L.) collections revealed by RAPD fingerprints. Hereditas. 143: 15–22.PubMedCrossRefGoogle Scholar
  22. Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3nd Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  23. Sarkhosh A, Zamani Z, Fatahi R and Ebadi A (2006). RAPD markers reveal polymorphism among some Iranian Pomegranate (Punica granatum L.) Sci. Hort. 111: 24–29.CrossRefGoogle Scholar
  24. Shah FH and Hamid A (1968). Studies in amla fruit (Emblica officinalis). Sci. Ind. (Karachi) 6: 50–56.Google Scholar
  25. Sharon D, Adato A, Mhameed S, Lavi U, Hillel J, Gomolka M, Epplen C and Epplen T (1995). DNA fingerprints in plants using simple-sequence repeat and mini-satellite probes. Hort Sci. 30: 109–112.Google Scholar
  26. Sidhu K, Kaur J, Kaur G and Pannu K (2007). Prevention and cure of digestive disorders through the use of medicinal plants. J. Hum. Ecol. 21: 113–116.Google Scholar
  27. Srivastava SK and Ranjan S (1967). Physiological studies on plant tannins III. Variation of tannin compounds in the developing fruits of Emblica officinalis (GAERTN). Flora Allg. Bot. Zeit (Jena) 158: 133–141.Google Scholar
  28. Storsberg J, Schulz H, Keusgen M, Tannous F, Dehmer KJ and Keller ER (2004). Chemical characterization of interspecific hybrids between Allium cepa L. and Allium kermesinum. J Agric Food Chem. 52: 5499–5505.PubMedCrossRefGoogle Scholar
  29. Warude D, Chavan P, Joshi K and Patwardhan B (2003). DNA isolation from fresh and dry plant samples with highly acidic tissue extracts. Plant Mol. Biol. Reporter 21: 467a–467f.CrossRefGoogle Scholar
  30. Warude D, Chavan P, Joshi K and Patwardhan B (2006). Development and Application of RAPD-SCAR marker for identification of Phyllanthus emblica L. Biol. Pharm. Bull. 29: 2313–2316.CrossRefGoogle Scholar
  31. Yeh FC, Young RC, Timothy B, Boyle TB, Ye ZH and Mao JX (1997). POPGENE manual, University of Albert Canada.Google Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2009

Authors and Affiliations

  • A. K. Chaurasia
  • V. R. Subramaniam
  • Bal Krishna
  • P. V. Sane

There are no affiliations available

Personalised recommendations