Skip to main content
Log in

Genetic engineering for heat tolerance in plants

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

High temperature tolerance has been genetically engineered in plants mainly by over-expressing the heat shock protein genes or indirectly by altering levels of heat shock transcription factor proteins. Apart from heat shock proteins, thermotolerance has also been altered by elevating levels of osmolytes, increasing levels of cell detoxification enzymes and through altering membrane fluidity. It is suggested that Hsps may be directly implicated in thermotolerance as agents that minimize damage to cell proteins. The other three above approaches leading to thermotolerance in transgenic experiments though operate in their own specific ways but indirectly might be aiding in creation of more reductive and energy-rich cellular environment, thereby minimizing the accumulation of damaged proteins. Intervention in protein metabolism such that accumulation of damaged proteins is minimized thus appears to be the main target for genetically-engineering crops against high temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal M, Katiyar-Agarwal, S. and Grover, A. (2002). Plant Hsp100 proteins: structure, function and regulation. Plant Sci., 163: 397–405.

    Article  CAS  Google Scholar 

  • Agarwal, M., Katiyar-Agarwal, S., Sahi, C., Gallie, D.R. and Grover, A. (2001). Arabidopsis thaliana Hsp100 protein: kith and kin. Cell Stress Chap., 6: 219–224.

    Article  CAS  Google Scholar 

  • Agarwal, M., Sarkar, N. and Grover, A. (2003). Low molecular weight heat shock proteins in plants. J. Plant Biol., 30: 141–149.

    Google Scholar 

  • Alia, Hayashi, H., Sakamoto, A. and Murata, N. (1998). Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J, 16: 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Alscher, R.G., Erturk, N., and Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  • Barnett, T.M., Altohuler, C., McDaniel, N. and Mascarenhas, J.P. (1980). Heat shock induced proteins in plant cells. Dev. Genet., 1: 331–340.

    Article  CAS  Google Scholar 

  • Batra, G., Chauhan, V.S., Singh, A., Sarkar, N.K. and Grover, A. (2007). Complexity of rice Hsp100 gene family: lessons from rice genome sequence data. J. Biosci., 32: 611–619.

    Article  PubMed  CAS  Google Scholar 

  • Buchner, J. (1999). Hsp90 & Co.: a holding for folding. Trends Biochem. Sci. 1999, 24: 136.

    Article  PubMed  CAS  Google Scholar 

  • Burke, J.J. and Chen, J. (2006). Changes in cellular and molecular processes in plant adaptation to heat stress. In: Plant-Environment Interactions (Ed. Huang, B.), CRC press, pp. 27–46.

  • Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol., 143, 251–262.

    Article  PubMed  CAS  Google Scholar 

  • Charng, Y.Y., Liu, H.C., Liu, N.Y., Hsu, F.C., and Ko, S.S. (2006). Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol., 140: 1297–1305.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Burke, J.J., Xin, Z, Xu, C. and Velten, J. (2006). Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance. Plant Cell Environ., 29: 1437–1448.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Vaghchhipawala, Z., Li, W., Asard, H. and Dickman, M. B. (2004). Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by bax and oxidative stresses in yeast and plants. Plant Physiol., 135: 1630–1641.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, S.M., Hoskins, J.R., and Wickner, S. (2007). Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc Natl Acad Sci U S A 104, 11138–11144.

    Article  PubMed  CAS  Google Scholar 

  • Dragovic, Z., Broadley, S.A., Shomura, Y., Bracher, A., and Hartl, F.U. (2006). Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25: 2519–2528.

    Article  PubMed  CAS  Google Scholar 

  • Feng, L., Wang, K., Li, Y., Tan, Y., Kong, J., Li, H. and Zhu, Y. (2007). Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep. DOI 10.1007/s00299-006-0299-y

  • Georgopoulos, C. and Welch, P.A. (1993). Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol., 9: 601–634.

    Article  PubMed  CAS  Google Scholar 

  • Gepstein, S., Grover, A. and Blumwald, E. (2005). Producing biopharmaceuticals in the desert: building an abiotic stress tolerance in plants for salt, heat and drought. In: Modern Biopharmaceuticals. (Eds Knablein, J. and Muller, R.H.), Wiley-VCH Verlag GmbH & Co., Weinhaum, pp. 967–994.

    Chapter  Google Scholar 

  • Glover, J.R. and Lindquist, S. (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell, 94: 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Grover, A. (2002). Molecular biology of stress responses. Cell Stress Chap., 7: 1–5.

    Article  Google Scholar 

  • Grover, A., Agarwal, M., Katiyar-Agarwal, S., Sahi, C. and Agarwal, S. (2000). Production of high temperature tolerant transgenic plants through manipulation of photosynthetic membrane lipids. Curr. Sci., 79: 557–559.

    Google Scholar 

  • Grover, A., Aggarwal, P.K., Kapoor, A., Katiyar-Agarwal, S., Agarwal, M., Chandramouli, A. (2003). Addressing abiotic stresses in agriculture through transgenic technology. Curr Sci., 84: 355–367.

    Google Scholar 

  • Grover, A., Kapoor, A., Katiyar-Agarwal, S., Agarwal, M., Sahi, C., Jain, P., Satyalakshmi, O., Agarwal, S. and Dubey, H. (2001a). Experimentation in biology of plant abiotic stress responses. Proc Indian Natl Acad Sci., B67: 189–214.

    Google Scholar 

  • Grover, A., Kapoor, A., Satyalakshmi, O., Agarwal, S., Sahi, C., Katiyar-Agarwal, S., Agarwal, M. and Dubey, H. (2001b). Understanding molecular alphabets of the plant abiotic stress responses. Curr. Sci., 80: 206–216.

    CAS  Google Scholar 

  • Grover, A., Pareek, A., Singla, S.L., Minhas, D., Katiyar, S., Ghawana, S., Dubey, H., Agarwal, M., Rao, G.U., Rathee, J. and Grover, A. (1998). Engineering crops for tolerance against abiotic stresses through gene manipulation. Curr. Sci., 75: 689–696.

    Google Scholar 

  • Grover, A., Sahi, C., Sanan, N. and Grover, A. (1999). Taming abiotic stresses in plants through genetic engineering: current strategies and perspective. Plant Sci., 143: 101–111.

    Article  CAS  Google Scholar 

  • Hartl, F.U., Hlodan, R. and Langer, T. (1994). Molecular chaperones in protein folding: The art of avoiding sticky situations Trends Biochem. Sci., 19: 20–25.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S.W. and Vierling, E. (2000). Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci, U S A 97: 4392–4397.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S.W. and Vierling, E. (2001). Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J, 27: 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Ignatova, Z. and Gierasch, L.M. (2006). Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci, U S A., 103: 13357–13361.

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal, S., Agarwal, M. and Grover, A. (2003). Heat tolerant basmati rice engineered by overexpression of hsp101 gene. Plant Mol. Biol., 51: 677–686.

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal, S., Agarwal, M., Gallie, D. and Grover, A. (2001). Search for the cellular functions of plant Hsp100/Clp family proteins. Crit. Rev. lant Sci., 20: 277–295.

    Article  CAS  Google Scholar 

  • Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., and Scharf, K.D. (2007). Complexity of the heat stress response in plants. Curr. Opin. Plant Biol., 10, 310–316.

    Article  PubMed  CAS  Google Scholar 

  • Krishna, P. and Gloor, G. (2001). The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chap., 6: 238–246.

    Article  CAS  Google Scholar 

  • Kumar, M.S., Kumar, G., Srikanthbabu, V. and Udayakumar, M. (2007). Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes. J Plant Physiol., 164: 111–125.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H. and Schoffl, F. (1996). An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol. Gen. Genet, 252: 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H., Hubel, A., and Schoffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J. 8(4): 603–612.

    Article  PubMed  CAS  Google Scholar 

  • Lee, U., Wie, C., Escobar, M., Williams, B., Hong, S.W., and Vierling, E. (2005). Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. Plant Cell, 17: 559–571.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., Chen, Q., Gao, X., Chen, N., Xu, S., Chen, J. and Wang, X. (2005). AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci. China C Life Sci., 48(6):540–550.

    Article  PubMed  CAS  Google Scholar 

  • Low, D., Brandle, K., Nover, L. and Forreiter, C. (2000). Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta, 211: 575–582.

    Article  PubMed  CAS  Google Scholar 

  • Malik, M.K., J. P. Slovin, Hwang, C.H. and Zimmerman, J.L. (1999). Modified expression of a carrot small heat shock protein gene, hsp17.7, results in increased or decreased thermotolerance. Plant J, 20: 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L. and Scharf, K.D. (2002). In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev., 16: 1555–1567.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, T., Matsuba, S., Funatsuki, H., Kawaguchi, K., Saruyama, H., Tanida, M. and Sato, Y. (2004). Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol. Breed., 13: 165–175.

    Article  CAS  Google Scholar 

  • Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H. and Iba, K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science, 287: 476–479.

    Article  PubMed  CAS  Google Scholar 

  • Murata, N. (1983). Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol., 24:81–86.

    CAS  Google Scholar 

  • Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, H., Tasaka, Y. and Nishida, I. (1992). Genetically engineered alteration in the chilling sensitivity of plants. Nature, 356: 710–713.

    Article  CAS  Google Scholar 

  • Neta-Sharir, I., Isaacson, T., Lurie, S. and Weiss, D. (2005). Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell, 17: 1829–1838.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sotelo, J., Martinez, L.M., Ponce, G., Cassab, G.I., Alagon, A., Meeley, R.B., Ribaut, J.M., and Yang, R. (2002). Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell, 14: 1621–1633.

    Article  PubMed  CAS  Google Scholar 

  • Ou, W., Park, Y-D., Zhou, H-M. (2001) Molecular mechanism for osmolyte protection of creatine kinase against guanidine denaturation. Euro J Biochem, 268: 5901–5911.

    Article  CAS  Google Scholar 

  • Panchuk, I.I., Volkov, R.A. and Schoffl, F. (2002). Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol., 129: 838–853.

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou, G.C. and Murata, N. (1995). The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem II complex. Photosynth Res., 44: 243–252.

    Article  CAS  Google Scholar 

  • Park, S.M. and Hong, C.B. (2002). Class I small heat shock protein gives thermotolerance in tobacco. J. Plant Physiol., 159: 25–30.

    Article  CAS  Google Scholar 

  • Pike, C.S., Grieve, J., Badger, M.R. and Price, G.D. (2001). Thermoprotective properties of small heat shock proteins from rice, tomato and Synechocystis sp. PCC6803 overexpressed in, and isolated from, Escherichia coli. Aust. J. Plant Physiol., 28:1219–1229.

    CAS  Google Scholar 

  • Prandl, R., Hinderhofer, K., Eggers-Schumacher, G., and Schoffl, F. (1998). HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol. Gen. Genet., 258: 269–278.

    Article  PubMed  CAS  Google Scholar 

  • Queitsch, C., Hong, S.W., Vierling, E. and Lindquist, S. (2000). Hsp101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 12: 479–492.

    Article  PubMed  CAS  Google Scholar 

  • Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M.P., and Bukau, B. (2006). Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J, 25: 2510–2518.

    Article  PubMed  CAS  Google Scholar 

  • Ritossa, F.M. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 18: 571–573.

    Article  CAS  Google Scholar 

  • Sage, R.F. and Kubien, D.S. (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ., 30: 1086–1106.

    Article  PubMed  CAS  Google Scholar 

  • Sakuma, Y., Maruyama, K., Quin, F., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K., (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl Acad Sci USA, 103: 18822–18827.

    Article  PubMed  CAS  Google Scholar 

  • Salvucci, M.E., DeRidder, B.P. and Portis, A.R.Jr. (2006). Effect of activase level and isoform on the thermotolerance of photosynthesis in Arabidopsis. J. Expt. Bot., 57: 3793–3799.

    Article  CAS  Google Scholar 

  • Sanchez, Y. and Lindquist, S. (1990). HSP104 required for induced thermotolerance. Science 248: 1112–1114.

    Article  PubMed  CAS  Google Scholar 

  • Sanmiya, K., Suzuki, K., Egawa, Y. and Shono, M. (2004). Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants FEBS Lett., 557: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Scharf, K.D., Siddique, M., and Vierling, E. (2001). The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chap., 6: 225–237.

    Article  CAS  Google Scholar 

  • Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E., and Koskull-Doring, P. (2007). A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. (In press).

  • Shabtai, S., Salts, Y., Kaluzky, G. and Barg, R. (2007). Improved yielding and reduced puffiness under extreme temperatures induced by fruit-specific expression of rolB in processing tomatoes. Theor Appl Genet., 114: 1203–1209.

    Article  PubMed  CAS  Google Scholar 

  • Shi, W.M., Muramoto, Y., Ueda, A. and Takabe, T. (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273: 23–27.

    Article  PubMed  CAS  Google Scholar 

  • Singla, S.L., Pareek, A. and Grover, A. (1997). High temperature stress. In: Physiological Ecology of Plants. (Ed M.N.V. Prasad), John Wiley and Sons, pp. 101–127.

  • Sohn, S.O. and Back, K. (2007). Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biol. Plant., 51(2): 340–342.

    Article  CAS  Google Scholar 

  • Suzuki, N., Rizhsky, L., Liang, H., Shuman, J., Shulaev, V. and Mittler, R. (2005). Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol., 139: 1313–1322.

    Article  PubMed  CAS  Google Scholar 

  • Tang, L., Kwon, S.Y., Kim, S.H., Kim, J.S., Choi, J.S., Cho, K.Y., Sung, C.K., Kwak, S.S. and Lee, H.S. (2006). Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep., 25: 1380–1386.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, P.G., Dominy, P.J., Vigh, L., Mansourian, A.R., Quinn, P.J. and Williams, W.P. (1986) Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim Biophys Acta, 849: 131–140.

    Article  CAS  Google Scholar 

  • Tissieres, A., Mitchell, H. K. and Tracey, U. M. (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol., 84: 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Tognetti, V.B., Palatnik, J.F., Fillat, M.F., Melzer, M., Hajirezaei, M.R., Valle, E.M. and Carrillo, N. (2006). Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell, 18: 2035–2050.

    Article  PubMed  CAS  Google Scholar 

  • Vierling, E. (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 42: 579–620.

    Article  CAS  Google Scholar 

  • Vigh, L., Horvath, I., Maresca, B. and Harwood, J.L. (2007). Can the stress protein response be controlled by ‘membrane-lipid therapy’? Trends Biochem. Sci., 32: 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Vigh, L., Maresca, B. and Harwood, J.L. (1998). Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem. Sci., 23: 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M. and Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environ. Expt. Bot., 61: 199–223.

    Article  Google Scholar 

  • Wang, W., Vincour, B., Shoseyov, O. and Altman, A. (2004). Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci., 9: 244–252.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Vinocur, B. and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C. (1995). Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol., 11:441–469.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J.Y., Sun, Y., Sun, A.Q., Yi, S.Y., Qin, J., Li, M.H., Liu, J. (2006). The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. Plant Mol. Biol., 62: 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Liang, Z. and Lu, C. (2005). Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol., 138: 2299–2309.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, C.H., Chang, P.L., Yeh, K.W., Lin, W.C., Chen, Y.M. and Lin, C.Y. (1997). Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. USA 94: 10967–10972.

    Article  CAS  Google Scholar 

  • Yeh, C.H., Chen, Y.M. and Lin, C. Y. (2002). Functional regions of rice heat shock protein, Oshsp16.9, required for conferring thermotolerance in Escherichia coli. Plant Physiol., 128: 661–668.

    Article  PubMed  CAS  Google Scholar 

  • Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M. and Oda, K. (2007). Expression of rice heat stress transcription factor OshsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta (in press) DOI 10.1007/s00425-007-0670-4

  • Young, L.S., Yeh, C. H., Chen, Y.M. and Lin, C. Y. (1999). Molecular characterization of Oryza sativa 16.9 kDa heat shock protein. Biochem. J., 344: 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C. and Guy, C.L. (2005). Co-immunoprecipitation of Hsp101 with cytosolic Hsc70. Plant Physiol. Biochem., 43: 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., Shabtai, S. and Ben-Hayyim, G. (2005). Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J, 44: 361–371.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Grover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Grover, A. Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants 14, 155–166 (2008). https://doi.org/10.1007/s12298-008-0014-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-008-0014-2

Key words

Navigation