Skip to main content

Advertisement

Log in

Towards salinity tolerance in Brassica: an overview

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Among the various abiotic stresses limiting the crop productivity, salinity stress is a major problem, which needs to be addressed and answered urgently. Since members of Brassicaceae are important contributor to total oilseed production, there is an immediate need being felt to raise Brassica plants which would be more suitable for saline and dry lands in years to come. One of the suggested way to develop salinity tolerant Brassica plants is to make use of the broad gene pool available within the family. Efforts of breeders have been successful in such endeavors to a large extent and several salinity tolerant Brassica genotypes have been developed within India and elsewhere. On the other hand, transgenic technology will undoubtedly continue to aid the search for the cellular mechanisms that confer tolerance, but the complexity of the trait is likely to mean that the road to engineer such tolerance into sensitive species will not be easy. However, with increasing number of reports available for suitable genetic transformation for various Brassica genotypes, there is a hope that salinity tolerance can be improved in this important crop plant. In this direction, the complete genome sequence of related wild plants such as Arabidopsis or crop plants such as rice can also serve as a platform for identification of “candidate genes”. Recently, complete genome sequencing of the Brassica genomes has also been initiated with the view that availability of such useful information can pave way towards raising Brassica with improved tolerance towards these stresses. In the present paper, we discuss the success obtained so far; in raising brassica genotypes with improved salinity tolerance employing both plant breeding and/or genetic engineering tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SOS:

salt overly sensitive

QTL:

Quantitative trait loci

PR:

pathogenesis-related

LEA:

late embryogenesis abundant

References

  • Apse, M.P. and Blumwald, E. (2002). Engineering salt tolerance in plants. Curr. Opin. Biotech. 13: 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Ashraf, M. (1994). Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 13: 17–42.

    Article  Google Scholar 

  • Ashraf, M. (2002). Salt-tolerance of cotton: some new advances. Crit. Rev. Plant Sci. 21: 1–30.

    Article  CAS  Google Scholar 

  • Ashraf, M. and McNeilly, T. (2004). Salinity tolerance in Brassica oilseeds. Crit. Rev. Plant Sci. 23: 157–174.

    Article  CAS  Google Scholar 

  • Ashraf, M., McNeilly, T., and Nazir, M. (2001). Comparative salt tolerance of amphidiploid and diploid Brassica species. Plant Sci. 160: 683–689.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya, R.C., Maheswari, M., Dineshkumar, V., Kirti, P.B., Bhat, S.R. and Chopra, V.L. (2004). Transformation of Brassica oleracea var. capitata with bacterial betA gene enhances tolerance to salt stress. Sci Hortic. 100: 215–227.

    Article  CAS  Google Scholar 

  • Bohnert, H.J., and Jensen, R.G. (1996). Metabolic engineering for increased salt tolerance—the next step. Australian Journal of Plant Physiology 23: 661–666.

    Article  Google Scholar 

  • Carvajal, M., Martinez, M., and Alcaraz, C.F. (1999). Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol. Plant. 105: 95–101.

    Article  CAS  Google Scholar 

  • Dubey, R.S. (1997). Photosynthesis in plants under stressful conditions. In: Handbook of Photosythesis, pp. 859–875. Pessaraki, M., Ed., Marcel Dekker, New York.

    Google Scholar 

  • Dreyer, L.L., and Jordaan, M. 2000a. Capparaceae. In: Seed Plants of Southern Africa (ed. O.A. Leistner). National Botanical Institute, Pretoria. Strelitzia 10: 204–206.

    Google Scholar 

  • Dreyer, L.L, and Jordaan, M. 2000b. Brassicaceae. In: Seed Plants of Southern Africa (ed. O.A. Leistner). National Botanical Institute, Pretoria. Strelitzia 10: 184–191.

    Google Scholar 

  • Erickson, L.R., Streus, N.A., and Baversdorf, W.D., (1983). Restriction patterns reveal origins of chloroplast genomes in Brassica amphidiploids. Theor Appl Genet.. 65: 201–206

    Article  CAS  Google Scholar 

  • Flowers, T.J., Garcia, A., Koyama, M., Yeo, A.R. (1996) Breeding for salt tolerance in crop plants—the role of molecular biology. Acta Physiol. Plant. 19: 427–433.

    Article  Google Scholar 

  • Foolad, M.R., Zhang, L.P., and Lin, G.Y. (2001). Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome. 44: 444–454.

    Article  PubMed  CAS  Google Scholar 

  • Foolad, M.R., and Chen, F.Q., (1999). RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato. Theor Appl Genet. 99: 235–243.

    Article  CAS  Google Scholar 

  • Frandsen, K.J. (1943). The experimental formation of Brassica juncea Czern. et. Coss. Dansk Bot. Arkiv 11(4): 1–17.

    Google Scholar 

  • Frandsen, K.J. (1947). (Plant Breeding Sta., Taastrup, Denmark) The experimental formation of Brassica napus L. var. oleifera DC. and Brassica carinata Braun. Dansk Bot. Arkiv 12(7): 1–16.

    Google Scholar 

  • Gomez-Campo, C. (1999). Biology of Brassica coenospecies. Elsevier Science, The Nederlands

    Google Scholar 

  • Gomez-Campo, C., and Tortosa, M.E. (1974). The taxonomic and evolutionary significance of some juvenile characters in Brassicaceae. Bot J Linn Soc. 69: 105–124

    Article  Google Scholar 

  • Gorham, J., Britol, A., Young, E.M., and Wyn Jones, R.G. (1991). The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theor Appl Genet. 82: 729–736.

    Article  Google Scholar 

  • Greenway, H., and Munns, R. (1980). Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31: 149–190.

    Article  CAS  Google Scholar 

  • Guo, Y., Halfter, U., Ishitani, M., and Zhu, J.K. (2001). Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell. 13: 1383–1400.

    Article  PubMed  CAS  Google Scholar 

  • He, T., and Cramer, G.R. (1992). Growth and mineral nutrition of six rapid-cycling Brassica species in response to sea water salinity. Plant Soil 139: 285–294.

    Article  CAS  Google Scholar 

  • Hopkins, M.S., Casa, A.M., Wang, T., Mitchell, S.E., Dean, R.E., Kochert, G.D., Kresovich, S. (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci. 39: 1243–1247.

    CAS  Google Scholar 

  • Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A., and Selvaraj, G. (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol. 122: 747–756

    Article  PubMed  CAS  Google Scholar 

  • Jain, R.K., and Selvaraj, G. (1997). Molecular genetic improvement of salt tolerance in plants. Biotech. Annu. Rev. 3: 245–267.

    CAS  Google Scholar 

  • Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., and Bohnert, H.J. (2001). Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889–905.

    Article  PubMed  CAS  Google Scholar 

  • Knight, H. (2000). Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 195: 269–324.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, D. (1993). Variability studies in Indian mustard on normal and saline soils. Ann. Arid Zone. 32: 25–28.

    Google Scholar 

  • Kumar, D. (1995). Salt tolerance in oilseed brassicas—present status and future prospects. Plant Breed. Abst. 65: 1438–1447.

    Google Scholar 

  • Landfald B, Strøm AR. (1986) Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol. 165: 849–855.

    PubMed  CAS  Google Scholar 

  • Liphschitz, N., and Waisel, Y. (1982). Adaptation of plants to saline environments: salt excretion and glandular structure. p. 197–214. In D.N. Sen and K.S. Rajpurohit (ed.) Tasks for Vegetation Science. Vol. 2. Dr W. Junk Publ., The Hague.

    Google Scholar 

  • Liu, J.J., Ekramoddoullah, A.K.M. (2004) Characterization, expression and evolution of two novel subfamilies of Pinus monticola (Dougl. ex D. Don) cDNAs encoding pathogenesis-related (PR)-10 proteins. Tree Physiol 24:1377–1385.

    PubMed  CAS  Google Scholar 

  • Liu, J., Ishitani, M., Halfter, U., Kim, C.S., and Zhu, J.K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Nat Acad Sci USA 97:3730–3734.

    Article  PubMed  CAS  Google Scholar 

  • Mäkela, P., Kontturi, M., Pehu, E., and Somersalo, S. (1999). Photosynthetic response of drought-and salt-stressed tomato and turnip rape plants to foliarapplied glycinebetaine. Physiol. Plant. 105: 45–50.

    Article  Google Scholar 

  • Malik, R.S. (1990). Prospects for Brassica carinata as an oilseed crop in India. Exp. Agric. 26: 125–129.

    Google Scholar 

  • McNeil SD, Rhodes D, Russell BL, Nuccio ML, Shachar-Hill Y, Hanson AD. (2000) Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol. 124:153–162.

    Article  PubMed  CAS  Google Scholar 

  • Morinaga, T. (1934). Interspecific hybridization in Brassica. VI. The cytology of F1 hybrids of Brassica juncea and B. nigra. Cytologia 6: 62–67.

    Google Scholar 

  • Nguyen, H.T., Babu, R.C., and Blum, A. (1997). Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci. 37: 1426–1434.

    Google Scholar 

  • Park, B.J., L.Z.K. Akira., and Kameya, T. (2005). Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci. 169: 553–558.

    Article  CAS  Google Scholar 

  • Pradhan, A.K., Gupta, V., Mukhopadhyay, A., Arumugam, N., Sodhi, Y.S., Pental, D. (2003) A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet. 106: 607–614

    PubMed  CAS  Google Scholar 

  • Pradhan, A.K., Prakash, S., Mukhopadhyay, A., and Pental, D., (1992). Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns. Molecular and taxonomic classifications are incongruous. Theor Appl Genet. 85: 331–340

    Article  Google Scholar 

  • Prakash, S., Takahata, Y., Kirti, P. B., Chopra, V. L. (1999) Cytogenetics. In: C. Gomez-Campo (ed.), Biology of Brassica Coenospecies, 59–106. Elsevier Science, Amsterdam

    Chapter  Google Scholar 

  • Prasad, K.V.S.K., Sharmilal, P., Kumar, P.A., and Saradhi, P.S. (2000) Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol. Breed. 6: 489–499

    Article  CAS  Google Scholar 

  • Quesada, V., Garcia, M.S., Piqueras, P., Ponce, M.R., and Micol, J.L. (2002). Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol. 130: 951–963.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal, D., Agarwal, P., Tyagi, W., Singla-Pareek, S.L., Reddy, M.K., and Sopory, S.K. (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol. Breed. 19: 137–151

    Article  CAS  Google Scholar 

  • Ramchiary, N., Padmaja, K.L., Sharma, S., Gupta, V., Sodhi, Y.S., Mukhopadhyay, A., Arumugam, N., Pental, D., and Pradhan, A.K. (2007) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet. PMID: 17646960

  • Sadiq, M., Jamil, M., Mehdi, S.M., Sarfraz, M., and Hassan, G. (2002) Comparative performance of Brassica varities/lines under saline sodic condition. Asian J Plant Sci. 2: 77–78

    Google Scholar 

  • Salekdeh, G.H., Siopongco, J., Wade, L.J., Ghareyazie, B., and Bennett, J. (2002). A proteomic approach to analyzing drought-and salt-responsiveness in rice. Field Crops Res. 76: 199–219

    Article  Google Scholar 

  • Sanders, D., Brownlee, C., and Harper, J.F. (1999). Communicating with calcium. Plant Cell 11: 91–706.

    Article  Google Scholar 

  • Saranga, Y., Menz, M., Jiang, C., Wright, R., Yakir, D., and Paterson, A.H. (2001). Genomic dissection of genotype x environment adaptation conferring adaptation of cotton to arid conditions. Genome Res. 11: 1988–1995.

    Article  PubMed  CAS  Google Scholar 

  • Shi, H.Z., Ishitani, M., Kim, C.S., and Zhu, J.K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Nat. Acad. Sci. USA 97: 6896–6901.

    Article  PubMed  CAS  Google Scholar 

  • Song, K.M., Osborn, T.C., and Williams, P.H. (1988). Brassica taxonomy based on nuclear restriction fragment length polymorhisms (RFLPs). 2. Preliminary analysis of subspecies within B. rapa (syn. Campestris) and B. oleracea. Theor Appl Genet. 76: 593–600

    Article  CAS  Google Scholar 

  • Song, K.M., Osborn, T.C., and Williams, P.H. (1990). Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. Campestris). Theor Appl Genet. 79: 497–506

    Article  Google Scholar 

  • Srivastava, S., Fristensky, B., and Kav, N.N.V. (2004). Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physiol. 45: 1320–1324.

    Article  PubMed  CAS  Google Scholar 

  • Stebbins, G.L. (1966). Chromosomal variations and evolution. Science 152: 1463–1469.

    Article  PubMed  Google Scholar 

  • Tanksley, S., Grandillo, S., Fulton, T., Zamir, D., Eshed, Y., Petiard, V., Lopez, J., and Beck-Bunn, T. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet. 92: 213–224.

    Article  CAS  Google Scholar 

  • U, N. (1935). Genome analysis of Brassica with special reference to the experimental formation of Brassica napus and peculiar mode of fertilization. Jap. J. Bot. 7: 389–452.

    Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M., (1995). AFLP: a new technique for DNA fingerprinting. Nucl. Acid. Res. 23: 4407–4414.

    Article  CAS  Google Scholar 

  • Warwick, S.I., and Black, L.D. (1991). Molecular systematics of Brassica and allied genera (Subtribe Brassicinae Brassicae)-chloroplast genome and cytodeme congruence. Theor Appl Genet. 82: 81–92

    Article  CAS  Google Scholar 

  • Warwick SI, Francis A, La Fleche J (2000) Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae) 2nd edn. Agriculture and Agri-Food Canada Research Branch Publication, ECORC Ottawa, Canada. Contribution No. 991475. [http://www.brassica.info]

    Google Scholar 

  • Willis, J.C. (1973). A Dictionary of the Flowering Plants and Ferns. Eighth Edition. Cambridge University Press, Cambridge et alet alibi. 1245 pp.

    Google Scholar 

  • Yeo, A.R., (1998). Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Bot. 49: 915–929.

    Article  CAS  Google Scholar 

  • Zhang, H.X., and Blumwald, E. (2001). Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits. Nature Biotech. 19: 765–768.

    Article  CAS  Google Scholar 

  • Zhang, H.X., Hodson, J.N., Williams, J.P., and Blumwald, E. (2001) Engine-ering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation; Proc. Natl. Acad. Sci. USA 98: 12832–12836

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K. (2001a). Plant salt tolerance. Trends Plant Sci. 6: 66–71.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K. (2001b). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4: 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol 53: 247–273.

    CAS  Google Scholar 

  • Zhu, J.K., Liu, J., and Xiong, L. (1998). Genetic analysis of salt tolerance in Arabidopsis thaliana evidence of a critical role for potassium nutrition. Plant Cell. 10:1181–1192.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Pareek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purty, R.S., Kumar, G., Singla-Pareek, S.L. et al. Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plants 14, 39–49 (2008). https://doi.org/10.1007/s12298-008-0004-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-008-0004-4

Key words

Navigation