Skip to main content

Implicit options in life insurance: An overview

Abstract

Proper pricing and risk assessment of implicit options in life insurance contracts has gained substantial attention in recent years, which is reflected in a growing literature in this field. In this article, we first present the different contract designs in Europe and the United States and point out differences in the contract design. Second, a comprehensive overview and description of implicit options contained in these contracts is provided. With focus on participating contracts, we present contract design, valuation methods, and main results of several recent articles in this field. The study indicates that current developments regarding regulation (Solvency II, Swiss Solvency Test), accounting (IFRS), customer needs, and secondary life insurance markets may lead to a trend away from traditional contract design of participating policies and toward new products that are of a more transparent modular form such as variable annuities. These new contracts will contain fewer basic guarantees and a set of additional, adequately priced options.

Zusammenfassung

Die adäquate Bewertung und Risikomessung von impliziten Optionen haben in den letzten Jahren stark an Bedeutung gewonnen. Ziel des vorliegenden Beitrags ist zunächst die Darstellung von Lebensversicherungsverträgen in Europa und den USA sowie das Aufzeigen von zentralen Unterschieden. Darüber hinaus werden ein umfassender Überblick und eine Beschreibung von impliziten Optionen gegeben, die in diesen Verträgen enthalten sind. Des Weiteren werden Vertragsdesign, Bewertungsmethoden und zentrale Ergebnisse von mehreren Artikeln vorgestellt, die sich mit traditionellen gemischten Kapitallebensversicherungsverträgen befassen. Die Untersuchung zeigt, dass die Entwicklungen im Hinblick auf Regulierung (Solvency II, Swiss Solvency Test), Aufsicht (IFRS), Kundenbedürfnisse und dem Zweitmarkt für Lebensversicherungen zu einem Trend weg von traditionellen Lebensversicherungsverträgen und hin zu modularen Produkten führen. Diese haben ein transparenteres Design mit wenigen Basisgarantien und einer Auswahl an zusätzlichen, adäquat bewerteten Optionen und Garantiebausteinen.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    The case of Equitable Life is discussed in O'Brien (2006).

  2. 2.

    For an overview and analysis of the Solvency II process, see Eling et al. (2007).

  3. 3.

    Developments in the field of International Financial Reporting Standards and the fair valuation approach are discussed in Jørgensen (2004).

  4. 4.

    Paragraph 5 of SFAS 157 defines the fair value as “the price that would be received to sell an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date.” In IFRS, fair value is generally defined as “the amount for which an asset could be exchanged, or a liability settled, between knowledgeable, willing parties in an arm's length transaction” (IASB 2006).

  5. 5.

    In 2005, the European share of worldwide life insurance premiums amounted to 37.6%, and the United States had a 26.2% share (Enz 2006).

  6. 6.

    For the following description of life insurance policies, see Bowers et al. (1997) and Trieschmann et al. (2005).

  7. 7.

    A comparison of different smoothing schemes in the United Kingdom can be found in Haberman et al. (2003).

  8. 8.

    See Enz (2006, p. 17) for a description of the development of unit-linked products.

  9. 9.

    An extensive discussion of unit-linked insurance products is provided in Helfenstein and Barnshaw (2003).

  10. 10.

    The four biggest life insurance markets in Europe together represented 70.9% of the total European life insurance premiums in 2004: United Kingdom (27.5%), France (19.1%), Germany (12.4%), and Italy (11.9%) (see European Insurance and Reinsurance Federation CEA 2006, p. 12). According to the European Insurance and Reinsurance Federation CEA (2006, p. 10), the share of unit-linked products in total life insurance premiums in the United Kingdom increased from 70% to 78% in 2004.

  11. 11.

    See Enz (2006, p. 17).

  12. 12.

    See, e. g., Grosen and Jørgensen (2000).

  13. 13.

    See, e. g., Briys and de Varenne (1997); Grosen and Jørgensen (2002).

  14. 14.

    See, e. g., Steffensen (2002); Linnemann (2003, 2004); Gatzert and Schmeiser (2008).

  15. 15.

    See Albizzati and Geman (1994); Bacinello (2001, 2003a, 2003b); Grosen and Jørgensen (1997, 2000); Steffensen (2002).

  16. 16.

    See Gatzert et al. (2008).

  17. 17.

    See Dillmann and Ruß (2001).

  18. 18.

    See Milevsky and Promislow (2001); Boyle and Hardy (2003); Haberman and Ballotta (2003).

  19. 19.

    Participating endowment contracts made up approximately 80% of the total liabilities for contracts with guaranteed annuity options (Boyle and Hardy 2003). The remaining part was mainly composed of unit-linked contracts.

  20. 20.

    See O'Brien (2006).

  21. 21.

    Carson 1994; Carson and Ostaszewski 2004.

  22. 22.

    An example of how minimum interest rate guarantees in participating life insurance contracts can be priced is provided in the Appendix A.

  23. 23.

    See Grosen and Jørgensen (2000); Bacinello (2003a, 2003b); Gatzert and Schmeiser (2008).

  24. 24.

    See results of the Swiss Solvency Test preliminary analysis field test conducted by the Swiss regulators in 2005 (Bundesamt für Privatversicherungen 2005).

  25. 25.

    The Swiss Solvency Test preliminary analysis field test in 2005 showed that particularly the lapsation and longevity scenarios can have substantial effects in terms of the risk-bearing capital.

  26. 26.

    See Gatzert and Kling (2007) for a more detailed analysis of fair pricing and shortfall risk for different contract types.

  27. 27.

    Let \( ( W_{t}), 0 \le t \le T \), be a standard Brownian motion on a probability space \( (\Omega , \mathcal{F} , \mathbb{P} ) \) and \( (\mathcal{F} _{t}), 0 \le \) \( t \le T, \) be the filtration generated by the Brownian motion.

  28. 28.

    For details see, e. g., Björk (2004).

  29. 29.

    For details concerning risk-neutral valuation, see, e. g., Björk (2004).

  30. 30.

    Note that this equation does not consider the limited liability of equityholders. For an example, see, e. g., Grosen and Jørgensen (2002).

  31. 31.

    For Monte Carlo simulation, see, e. g., Glasserman (2004).

References

  1. Albizzati, M.-O., Geman, H.: Interest rate risk management and valuation of the surrender option in life insurance policies. J. Risk Insur. 61(4), 616–637 (1994)

    Article  Google Scholar 

  2. American Council of Life Insurers: 2007 Life Insurers Fact Book. Available at http://www.acli.org. Accessed 4 December 2008. (2007)

  3. Babbel, D.F., Merrill, C.: Economic valuation models for insurers. N. Am. Actuarial J. 2(3), 1–17 (1998)

    Google Scholar 

  4. Bacinello, A.R.: Fair pricing of life insurance participating policies with a minimum interest rate guarantee. ASTIN Bull. 31(2), 275–297 (2001)

    Article  Google Scholar 

  5. Bacinello, A.R.: Pricing guaranteed life insurance participating policies with annual premiums and surrender option. N. Am. Actuarial J. 7(3), 1–17 (2003a)

    Google Scholar 

  6. Bacinello, A.R.: Fair valuation of a guaranteed life insurance participating contract embedding a surrender option. J. Risk Insur. 70(3), 461–487 (2003b)

    Article  Google Scholar 

  7. Ballotta, L., Haberman, S., Wang, N.: Guarantees in with-profit and unitized with-profit life insurance contracts: Fair valuation problem in presence of the default option. J. Risk Insur. 73(1), 97–121 (2006)

    Article  Google Scholar 

  8. Baur, P., Enz, R.: Solvency II: An integrated risk approach for European insurers. Swiss Re Sigma 4 (2006)

  9. Björk, T.: Arbitrage Theory in Continuous Time. Oxford University Press, New York (2004)

    Book  Google Scholar 

  10. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  Google Scholar 

  11. Bowers Jr., N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., Nesbitt, C.J.: Actuarial Mathematics. The Society of Actuaries, Illinois (1997)

    Google Scholar 

  12. Boyle, P.P., Hardy, M.R.: Guaranteed annuity options. ASTIN Bull. 33(2), 125–152 (2003)

    Article  Google Scholar 

  13. Boyle, P.P., Schwartz, E.S.: Equilibrium prices of guarantees under equity-linked contracts. J. Risk Insur. 44(4), 639–660 (1977)

    Article  Google Scholar 

  14. Brennan, M.J., Schwartz, E.S.: The pricing of equity-linked life insurance policies with an asset value guarantee. J. Financ. Econ. 3(3), 195–213 (1976)

    Article  Google Scholar 

  15. Briys, E., de Varenne, F.: On the risk of insurance liabilities: Debunking some common pitfalls. J. Risk Insur. 64(4), 673–694 (1997)

    Article  Google Scholar 

  16. Bundesamt für Privatversicherungen: Swiss Solvency Test: Preliminary Analysis Field Test. Available at http://www.bpv.admin.ch. Accessed 4 December 2008. (2005)

  17. Carson, J.M.: Backdating of life insurance contracts: An examination. J. I. R. 13(2), 185–200 (1994)

    Google Scholar 

  18. Carson, J.M., Ostaszewski, K.: The actuarial value of life insurance backdating. J. Actuar. Pract. 11(1), 63–77 (2004)

    Google Scholar 

  19. Cox, J.C., Ross, S.A., Rubinstein, M.: Option Pricing: A simplified approach. J. Financ. Econ. 7(3), 229–263 (1979)

    Article  Google Scholar 

  20. Cummins, J.D., Miltersen, K.R., Persson, S.-A.: International comparison of interest rate guarantees in life insurance. Conference Proceedings ASTIN 2004 (2004)

  21. Dillmann, T.: Modelle zur Bewertung von Optionen in Lebensversicherungsverträgen. Ifa-Verlag, Ulm (2002)

    Google Scholar 

  22. Dillmann, T., Ruß, J.: Implicit options in life insurance contracts: Part 2 – The case of flexible expiration option in endowment contracts. Blätter DGVM 25(2), 225–235 (2001)

    Article  Google Scholar 

  23. Doherty, N.A., Singer, H.J.: The benefits of a secondary market for life insurance policies. Working Paper. Wharton Financial Institutions Center, Philadelphia (2002)

    Google Scholar 

  24. Eling, M., Schmeiser, H., Schmit, J.T.: The Solvency II process: Overview and critical analysis. Risk Manage. Insur. Rev. 10(1), 69–85 (2007)

    Article  Google Scholar 

  25. Enz, R.: World insurance in 2005: Moderate premium growth, attractive profitability. Swiss Re Sigma 5 (2006)

  26. European Insurance and Reinsurance Federation CEA: The European life insurance market in 2004. CEA Eco, 22. Available at http://www.cea.assur.org. Accessed 4 December 2008. (2006)

  27. FitchRatings: Solvency  II – What is happening? Europe Special Report (2005)

  28. Gatzert, N., Kling, A.: Analysis of participating life insurance contracts: A unification approach. J. Risk Insur. 74(3), 547–570 (2007)

    Article  Google Scholar 

  29. Gatzert, N., Hoermann, H., Schmeiser, H.: The impact of the secondary market on life insurers' surrender profits. Working paper on risk management and insurance. University of St. Gallen (2008)

  30. Gatzert, N., Schmeiser, H.: Assessing the risk potential of premium payment options in participating life insurance contracts. J. Risk Insur. 75(3), 691–712 (2008)

    Article  Google Scholar 

  31. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)

    Google Scholar 

  32. Grosen, A., Jørgensen, P.L.: Valuation of early exercisable interest rate guarantees. J. Risk Insur. 64(3), 481–503 (1997)

    Article  Google Scholar 

  33. Grosen, A., Jørgensen, P.L.: Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies. Insur. Math. Econ. 26(1), 37–57 (2000)

    Article  Google Scholar 

  34. Grosen, A., Jørgensen, P.L.: Life insurance liabilities at market value: An analysis of insolvency risk, bonus policy, and regulatory intervention rules in a barrier option framework. J. Risk Insur. 69(1), 63–91 (2002)

    Article  Google Scholar 

  35. Guillén, M., Jørgensen, P.L., Nielsen, J.P.: Return smoothing mechanisms in life and pension insurance: Path-dependent contingent claims. Insur. Math. Econ. 38(2), 229–252 (2006)

    Article  Google Scholar 

  36. Haberman, S., Ballotta, L.: Valuation of guaranteed annuity conversion options. Insur. Math. Econ. 33(1), 87–108 (2003)

    Article  Google Scholar 

  37. Haberman, S., Ballotta, L., Wang, N.: Modelling and valuation of guarantees in with-profit and unitised with-profit life insurance contracts. Actuarial Research Paper No. 146. Department of Actuarial Science and Statistics, Cass Business School London (2003)

  38. Hansen, M., Miltersen, K.R.: Minimum rate of return guarantees: The Danish case. Scand. Actuar. J. 2002(4), 280–318 (2002)

    Article  Google Scholar 

  39. Held, W.C.: Optionen in Lebensversicherungsverträgen. Ifa-Verlag, Ulm (1999)

    Google Scholar 

  40. Helfenstein, R., Barnshaw, M.: Unit-linked life insurance in Western Europe: Regaining momentum? Swiss Re Sigma 3 (2003)

  41. Herr, H.-O.: Implizite Finanzoptionen: Abschlussbericht zur Methodik der Bewertung von impliziten Finanzoptionen in Lebensversicherungsprodukten. Versicherungswirtschaft, Karlsruhe (2004)

    Google Scholar 

  42. IASB: Discussion paper fair value measurements, Part 1: Invitation to comment and relevant IFRS guidance. Available at: http://www.iasb.org. Accessed 4 December 2008. (2006)

  43. Jensen, B., Jørgensen, P.L., Grosen, A.: A finite difference approach to the valuation of path dependent life insurance liabilities. Geneva Pap. Risk Insur. Theory 26(3), 57–84 (2001)

    Article  Google Scholar 

  44. Jørgensen, P.L.: On accounting standards and fair valuation of life insurance and pension liabilities. Scand. Actuar. J. 2004(5), 372–394 (2004)

    Article  Google Scholar 

  45. Kling, A., Richter, A., Ruß, J.: The interaction of guarantees, surplus distribution, and asset allocation in with profit life insurance policies. Insur. Math. Econ. 40, 164–178 (2007)

    Article  Google Scholar 

  46. Linnemann, P.: An actuarial analysis of participating life insurance. Scand. Actuar. J. 2003(2), 153–176 (2003)

    Google Scholar 

  47. Linnemann, P.: Valuation of participating life insurance liabilities. Scand. Actuar. J. 2004(2), 81–104 (2004)

    Article  Google Scholar 

  48. Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manage. Sci. 4(1), 41–183 (1973)

    Article  Google Scholar 

  49. Milevsky, M.A., Promislow, S.D.: Mortality derivatives and the option to annuitize. Insur. Math. Econ. 29(3), 299–318 (2001)

    Article  Google Scholar 

  50. Miltersen, K.R., Persson, S.-A.: Guaranteed investment contracts: Distributed and undistributed excess return. Scand. Actuar. J. 2003(4), 257–279 (2003)

    Article  Google Scholar 

  51. O'Brien, C.: The downfall of equitable life in the United Kingdom: The mismatch of strategy and risk management. Risk Manage. Insur. Rev. 9(2), 189–204 (2006)

    Article  Google Scholar 

  52. Steffensen, M.: Intervention options in life insurance. Insur. Math. Econ. 31(1), 71–85 (2002)

    Article  Google Scholar 

  53. Tanskanen, A.J., Lukkarinen, J.: Fair valuation of path-dependent participating life insurance contracts. Insur. Math. Econ. 33(3), 595–609 (2003)

    Article  Google Scholar 

  54. Trieschmann, J.S., Hoyt, R.E., Sommer D.W.: Risk Management and Insurance, 12th edition. South-Western College Pub., Mason (2005)

    Google Scholar 

  55. Wong, C., Barnshaw, M., Bevere, L.: Allfinanz: Trends, Chancen und Herausforderungen. Swiss Re Sigma 5 (2007)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nadine Gatzert.

Appendix

Appendix

Modeling and pricing of a participating life insurance contract with minimum interest rate guarantee

The following example presents a modeling and pricing procedure for participating life insurance contracts. Pricing is conducted using risk-neutral valuation.Footnote 26 We con sider an insurance company, where policyholders make an exogenously given up-front payment of \( P_0 \) at contract inception (at time \( t = 0 \)), and \( E_0 \) is the initial payment made by the equityholders. The total value of initial contributions is then invested in assets.

Modeling the assets

We assume that the total market value of the asset portfolio follows a geometric Brownian motion.Footnote 27 Under the objective (real-world) measure \( \mathbb{P}, \) the asset process is described by

$$ dA ( t ) = \mu ( t ) A ( t ) dt + \sigma ( t ) A ( t ) dW^{\mathbb{P}} ( t )\,, $$

with asset drift \( \mu (t), \) volatility \( \sigma (t) \) that are assumed to be constant over time and a \( \mathbb{P} \)-Brownian motion \( W^{\mathbb{P}}. \) We assume a complete, perfect, and frictionless market. Thus, the solution of the stochastic differential equationFootnote 28 is given by

$$ A(t) = A(t-1) \cdot \exp \left( {\mu -\frac{\sigma ^2}{2} + \sigma \cdot ( {W^{\mathbb{P}} ( t ) - W^{\mathbb{P}} ( {t-1} )} )} \right)\,, $$

with \( A(0)=P_0 +E_0. \) Since pricing is conducted using risk-neutral valuation, the measure needs to be changed to the (risk-neutral) unique equivalent martingale measure \( \mathbb{Q}. \) In this setting, the drift of the geometric Brownian motion changes to the risk-free interest rate r, and development of the assets is given by

$$ dA ( t ) = rA ( t ) dt + \sigma ( t ) A ( t ) dW^{\mathbb{Q}} ( t )\,, $$

where \( W^{\mathbb{Q}} \) is a \( \mathbb{Q} \)-Brownian motion. The solution of this stochastic differential equation under \( \mathbb{Q} \) is given analogously as under \( \mathbb{P}. \)

Modeling the liabilities

Let P denote the policyholder's account, i. e., the book value of the policy reserves. Every year \( t = 1,2, {\ldots}\,, \) the policy reserve P is compounded with the policy interest rate \( r_{\text{P}}(t) \) that depends on the type of guarantee (point-to-point vs. cliquet-style interest rate guarantee) and the type of surplus distribution provided by the insurer. Thus, the development of the policy can in general be described by

$$ P ( t ) = P ( {t-1} ) \cdot ( {1+r_{\text{P}} ( t )} ) = P_0 \cdot \prod\limits_{i=1}^t {( {1+r_{\text{P}} ( i )} )}, t=1,2,{\ldots} $$

Depending on the performance of the insurer's asset base, the customer receives the accumulated book value \( P(T{\kern0.5pt}) \) of the contract at maturity T, and, for some contract designs, a terminal bonus \( S(T{\kern0.5pt}). \) Hence, the payoff \( L(T{\kern0.5pt}) \) to the policyholder is

$$ L ( T{\kern0.5pt}) = P ( T{\kern0.5pt}) + S ( T{\kern0.5pt}) = P_0 \cdot \prod\limits_{t=1}^T {( {1+r_{\text{P}} ( t )} ) + S(T{\kern0.5pt})}\,. $$

The exact form of the terminal bonus \( S(T) \) and the policy interest rate \( r_{\text{P}}(t) \) depends on the contract specifications, with one example being provided below. The amount of surplus credited to the policy reserves (represented by \( r_{\text{P}}(t)) \) as well as the terminal bonus payment typically depends on the insurance company's financial situation and thus on the development of the insurer's asset portfolio, respectively.

Fair contracts

We determine fair contracts using risk-neutral valuation, such that

$$ V_0 ( {L ( T{\kern0.5pt})} ) = e^{-rT} {\mathbb{E}}^{\mathbb{Q}} ( {L ( T{\kern0.5pt})} )\,, $$

where \( {\mathbb{E}}^{\mathbb{Q}} ( \cdot ) \) denotes the expectation under the risk-neutral martingale measureFootnote 29 \( \mathbb{Q}. \) A contract is considered fair if the time zero market value \( V_0 ( \cdot ) \) of the final payoff \( L ( T{\kern0.5pt}) \) under the risk-neutral measure \( \mathbb{Q} \) is equal to the up-front premium \( P_{0} \) paid by the policyholder,Footnote 30

$$ P_0 = V_0 ( {L ( T{\kern0.5pt})} ) = e^{-rT} {\mathbb{E}}^{\mathbb{Q}} ( {L ( T{\kern0.5pt})} )\,. $$

This equation can be used to find parameter combinations of fair contracts. Models that do not allow for explicit analytical expressions can be analyzed using simulation techniques.Footnote 31

Example: Point-to-point guarantee

In the case of a point-to-point guarantee, the single up-front premium \( P_{0} \) is compounded with the guaranteed interest rate g. The policy interest rate is thus given by \( r_{\text{P}} ( t ) = g, \) such that at expiration of the contract, the guaranteed payment is

$$ P ( T{\kern0.5pt}) =P_0 \cdot \prod\limits_{i=1}^T {( {1+g} )} = P_0 \cdot ( {1+g} )^T\,. $$

Additionally, the customer receives a fraction \( \delta \) of the terminal surplus, i. e., if \( A ( T{\kern0.5pt}) - L ( T{\kern0.5pt}) \textgreater 0. \) Hence, the final payoff \( L ( T{\kern0.5pt}) \) (without accounting for the limited liability of equityholders) can be summarized by

$$ L ( T{\kern0.5pt}) = P (T{\kern0.5pt}) + S (T{\kern0.5pt}) = P_0 \cdot \prod\limits_{i=1}^T {( {1+g} )} + \delta \cdot \max ( {A(T{\kern0.5pt})-P(T{\kern0.5pt}),0} )\,. $$

Thus, the payoff can be decomposed into two parts: the first term is a bond with a fixed payoff, whereas the second term is the payoff of a European call option on \( A(T) \) with (stochastic) strike price \( P(T). \) The closed-form solution for the market value \( V_0 ( {L ( T )} ) \) of the payoff using European option pricing theory is

$$ V_0 ( {L ( T )} ) = e^{-rT} {\mathbb{E}}^{\mathbb{Q}} ( {L ( T )} ) = e^{-rT} \cdot P(T) + \delta \cdot \big( {A_0 \cdot \Phi ( {d_1 } ) - P(T) \cdot e^{-rT} \cdot \Phi ( {d_2 } )} \big) $$

with

$$ d_1 = \frac{\ln ( {A_0 /P ( T )} ) + ( {r+\sigma ^{2} /2} ) \cdot T}{\sigma \cdot \sqrt T } \quad \text{and} \quad d_2 = d_1 - \sigma \cdot \sqrt T\,. $$

Further types of interest rate guarantees are presented and examined in, e. g., Gatzert and Kling (2007).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gatzert, N. Implicit options in life insurance: An overview. ZVersWiss 98, 141–164 (2009). https://doi.org/10.1007/s12297-008-0046-2

Download citation

Keywords

  • Life Insurance
  • International Financial Reporting Standard
  • Insurance Contract
  • Contract Design
  • Premium Payment