Skip to main content

Advertisement

Log in

An improved NSGA-III algorithm based on elimination operator for many-objective optimization

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Due to the low selection pressure of the Pareto-dominance relation and the ineffectivity of diversity maintenance schemes in the environmental selection, the classical Pareto-dominance based multi-objective evolutionary algorithms (MOEAs) fail to handle many-objective optimization problems. The recently presented non-dominated sorting genetic algorithm III (NSGA-III) employs the uniformly distributed reference points to significantly promote population diversity, but the convergence based on the Pareto-dominance relation could still be enhanced. For this purpose, an improved NSGA-III algorithm based on elimination operator (NSGA-III-EO) is proposed. In the proposed algorithm, the elimination operator first identifies the reference point with maximum niche count and then employs the penalty-based boundary intersection distance to rank the individuals associated with it. To this end, the selection scheme is used to remove the worse individuals rather than to select the superior individuals. The proposed NSGA-III-EO is tested on a number of well-known benchmark problems with up to fifteen objectives and shows the competitive performance compared with five state-of-the-art MOEAs. Additionally, it is also tested on constrained problems having a large number of objectives and shows good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The code of NSGA-III-EO is available at https://www.researchgate.net/profile/Chao_Wang207/publications?sorting=recentlyAdded.

References

  1. Adra SF, Fleming PJ (2011) Diversity management in evolutionary many-objective optimization. IEEE Trans Evol Comput 15:183–195. doi:10.1109/Tevc.2010.2058117

    Article  Google Scholar 

  2. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19:45–76. doi:10.1162/Evco_a_00009

    Article  Google Scholar 

  3. Bi X, Wang C (2016) An improved NSGA-III algorithm based on objective space decomposition for many-objective optimization. Soft Comput. doi:10.1007/s00500-016-2192-0

  4. Cai L, Qu S, Yuan Y, Yao X (2015) A clustering-ranking method for many-objective optimization. Appl Soft Comput 35:681–694. doi:10.1016/j.asoc.2015.06.020

    Article  Google Scholar 

  5. Carreno Jara E (2014) Multi-objective optimization by using evolutionary algorithms: the p-optimality criteria evolutionary computation. IEEE Trans. 18:167–179. doi:10.1109/TEVC.2013.2243455

    Google Scholar 

  6. Chand S, Wagner M (2015) Evolutionary many-objective optimization: a quick-start guide. Surv Oper Res Manag Sci 20:35–42. doi:10.1016/j.sorms.2015.08.001

    MathSciNet  Google Scholar 

  7. Cheng J, Yen GG, Zhang G (2015) A many-objective evolutionary algorithm with enhanced mating and environmental selections. IEEE Trans Evol Comput 19:592–605. doi:10.1109/TEVC.2015.2424921

    Article  Google Scholar 

  8. Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8:631–657

    Article  MATH  MathSciNet  Google Scholar 

  9. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: solving problems with box constraints. IEEE Trans Evol Comput 18:577–601. doi:10.1109/Tevc.2013.2281535

    Article  Google Scholar 

  10. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R (eds) Evolutionary multiobjective optimization. Advanced information and knowledge processing. Springer, London, pp 105–145. doi:10.1007/1-84628-137-7_6

    Chapter  Google Scholar 

  11. Freire H, Oliveira PBD, Pires EJS, Bessa M (2015) Many-objective optimization with corner-based search. Memet Comput 7:105–118. doi:10.1007/s12293-015-0151-4

    Article  Google Scholar 

  12. Fu G, Kapelan Z, Kasprzyk JR, Reed P (2013) Optimal design of water distribution systems using many-objective visual analytics. J Water Resour Plan Manag 139:624–633

    Article  Google Scholar 

  13. Gomez RH, Coello CAC (2015) Improved metaheuristic based on the R2 indicator for many-objective optimization. Paper presented at the Gecco’15: proceedings of the 2015 genetic and evolutionary computation conference, Madrid, Spain

  14. He Z, Yen GG, Zhang J (2014) Fuzzy-based Pareto optimality for many-objective evolutionary algorithms. IEEE Trans Evol Comput 18:269–285. doi:10.1109/TEVC.2013.2258025

    Article  Google Scholar 

  15. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10:477–506. doi:10.1109/TEVC.2005.861417

    Article  MATH  Google Scholar 

  16. Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach. Part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18:602–622. doi:10.1109/Tevc.2013.2281534

    Article  Google Scholar 

  17. Joshi R, Deshpande B (2014) Empirical and analytical study of many-objective optimization problems: analysing distribution of nondominated solutions and population size for scalability of randomized heuristics. Memet Comput 6:133–145. doi:10.1007/s12293-014-0133-y

    Article  Google Scholar 

  18. Li K, Deb K, Zhang Q, Kwong S (2015) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput 19:694–716. doi:10.1109/TEVC.2014.2373386

    Article  Google Scholar 

  19. Li M, Yang S, Liu X (2014) Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Trans Evol Comput 18:348–365. doi:10.1109/TEVC.2013.2262178

    Article  Google Scholar 

  20. Lygoe R, Cary M, Fleming P (2013) A real-world application of a many-objective optimisation complexity reduction process. In: Purshouse R, Fleming P, Fonseca C, Greco S, Shaw J (eds) Evolutionary multi-criterion optimization, vol 7811. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 641-655. doi:10.1007/978-3-642-37140-0_48

  21. Sato H (2015) Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs. J Heuristics 21:819–849. doi:10.1007/s10732-015-9301-6

    Article  Google Scholar 

  22. Starkey A, Hagras H, Shakya S, Owusu G, Mohamed A, Alghazzawi D (2016) A cloud computing based many objective type-2 fuzzy logic system for mobile field workforce area optimization. Memet Comput 8:269–286. doi:10.1007/s12293-016-0206-1

    Article  Google Scholar 

  23. Trivedi A, Srinivasan D, Sanyal K, Ghosh A (2016) A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans Evol Comput. doi:10.1109/TEVC.2016.2608507

  24. While L, Bradstreet L, Barone L (2012) A fast way of calculating exact hypervolumes. IEEE Trans Evol Comput 16:86–95. doi:10.1109/TEVC.2010.2077298

    Article  Google Scholar 

  25. Xiang Y, Zhou Y, Li M, Chen Z (2017) A vector angle-based evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans Evol Comput 21:131–152. doi:10.1109/TEVC.2016.2587808

    Article  Google Scholar 

  26. Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 17:721–736. doi:10.1109/TEVC.2012.2227145

    Article  Google Scholar 

  27. Yuan Y, Xu H, Wang B, Yao X (2016) A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20:16–37. doi:10.1109/TEVC.2015.2420112

    Article  Google Scholar 

  28. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731. doi:10.1109/TEVC.2007.892759

    Article  Google Scholar 

  29. Zhang X, Tian Y, Jin Y (2016) Approximate non-dominated sorting for evolutionary many-objective optimization. Inf Sci 369:14–33. doi:10.1016/j.ins.2016.06.007

    Article  Google Scholar 

  30. Zhang XY, Tian Y, Jin YC (2015) A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 19:761–776. doi:10.1109/Tevc.2014.2378512

    Article  Google Scholar 

  31. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271. doi:10.1109/4235.797969

    Article  Google Scholar 

  32. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7:117–132. doi:10.1109/TEVC.2003.810758

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61175126) and the International S&T Cooperation Program of China (Grant No. 2015DFG12150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and animals rights

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, X., Wang, C. An improved NSGA-III algorithm based on elimination operator for many-objective optimization. Memetic Comp. 9, 361–383 (2017). https://doi.org/10.1007/s12293-017-0240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-017-0240-7

Keywords

Navigation