Skip to main content
Log in

A simplex social spider algorithm for solving integer programming and minimax problems

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new hybrid social spider algorithm with simplex Nelder-Mead method in order to solve integer programming and minimax problems. We call the proposed algorithm a Simplex Social Spider optimization (SSSO) algorithm. In the the proposed SSSO algorithm, we combine the social spider algorithm with its powerful capability of performing exploration, exploitation, and the Nelder-Mead method in order to refine the best obtained solution from the standard social spider algorithm. In order to investigate the general performance of the proposed SSSO algorithm, we test it on 7 integer programming problems and 10 minimax problems and compare against 10 algorithms for solving integer programming problems and 9 algorithms for solving minimax problems. The experiments results show the efficiency of the proposed algorithm and its ability to solve integer and minimax optimization problems in reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arora JS (1989) Introduction to Optimum Design. McGrawHill, New York

    Google Scholar 

  2. Aviles L (1986) Sex-Ratio bias and possible group selection in the social spider snelosimus eximius. Am Nat 128(1):1–12

    Article  MathSciNet  Google Scholar 

  3. Aviles L (1997) Causes and consequences of cooperation and permanent-sociality in spiders. In: Choe BC (ed) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 476–498

    Chapter  Google Scholar 

  4. Bacanin N, Tuba M (2012) Artificial Bee Colony (ABC) algorithm for constrained optimization improved with genetic operators. Stud Inf Control 21(2):137–146

    Google Scholar 

  5. Bandler JW, Charalambous C (1974) Nonlinear programming using minimax techniques. J Optim Theory Appl 13:607–619

    Article  MathSciNet  MATH  Google Scholar 

  6. Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in Artificial Bee Colony algorithm. Appl Soft Comput 11:2888–2901

    Article  Google Scholar 

  7. Cuevas E, Cienfuegos M, Zaldívar D, Pérez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384

    Article  Google Scholar 

  8. Dorigo M (1992) Optimization, Learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Italy

  9. Bacanin N, Brajevic I, Tuba M (2013) Firefly algorithm applied to integer programming problems. Recent Adv Math 143–148

  10. Borchers B, Mitchell JE (1992) Using an interior point method In a branch and bound algorithm for integer programming. Technical Report, Rensselaer Polytechnic Institute

  11. Borchers B, Mitchell JE (1997) A computational comparison of branch and bound and outer approximation methods for 0–1 mixed integer nonlinear programs. Comput Oper Res 24(8):699–701

    Article  MathSciNet  MATH  Google Scholar 

  12. Chu SA, Tsai P-W, Pan J-S (2006) Cat swarm optimization. Lecture notes in computer science (including sub-series lecture notes in artificial intelligence and lecture notes in bioinformatics), 4099 LNAI, pp 854–858

  13. Du DZ, Pardalos PM (eds) (1995) Minimax and applications. Nonconvex Optimization and Its Applications. doi:10.1007/978-1-4613-3557-3

  14. Eric C, Yip KS (2008) Cooperative capture of large prey solves scaling challenge faced by spider societies. Proc Natl Acad Sci USA 105(33):11818–11822

    Article  Google Scholar 

  15. Fletcher R (1980) Practical method of optimization, Vol.1 & 2. Wiley, NY

    MATH  Google Scholar 

  16. Glankwahmdee A, Liebman JS, Hogg GL (1979) Unconstrained discrete nonlinear programming. Eng Optim 4:95–107

    Article  Google Scholar 

  17. Han SP (1977) A globally convergent method for nonlinear programming. J Optim Theory Appl 22(3):297–309

    Article  MathSciNet  MATH  Google Scholar 

  18. Holland JH (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  19. Isabel ACP, Santo E, Fernandes E (2011) Heuristics pattern search for bound constrained minimax problems, computational science and its applications-6784. ICCSA, pp 174–184

  20. Jovanovic R, Tuba M (2011) An ant colony optimization algorithm with improved pheromone correction strategy for the minimum weight vertex cover problem. Appl Soft Comput 11(8):5360–5366

    Article  Google Scholar 

  21. Jovanovic R, Tuba M (2012) Ant colony optimization algorithm with pheromone correction strategy for minimum connected dominating set problem. Comput Sci Inf Syst (ComSIS) 9(4)

  22. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  23. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  24. Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. In: Proceedings of the IEEE 2002 congress on evolutionary computation. Honolulu (HI), pp 1582–1587

  25. Lawler EL, Wood DW (1966) Branch and bound methods: a survey. Oper Res 14:699–719

    Article  MathSciNet  MATH  Google Scholar 

  26. Li XL, Shao ZJ, Qian JX (2002) Optimizing method based on autonomous animats: Fish-swarm algorithm. Xitong Gongcheng Lilun yu Shijian/Syst Eng Theory Pract 22(11):32

    Google Scholar 

  27. Liuzzi G, Lucidi S, Sciandrone M (2006) A derivative-free algorithm for linearly constrained finite minimax problems. SIAM J Optim 16:1054–1075

    Article  MathSciNet  MATH  Google Scholar 

  28. Lukšan L, Vlcek J (2000) Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical report 798, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic

  29. Manquinho VM, Marques Silva JP, Oliveira AL, Sakallah KA (1997) Branch and bound algorithms for highly constrained integer programs. Technical Report, Cadence European Laboratories, Portugal

  30. Maxence S (2010) Social organization of the colonial spider Leucauge sp. in the Neotropics: vertical stratification within colonies. J Arachnol 38:446–451

    Article  Google Scholar 

  31. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  32. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MathSciNet  MATH  Google Scholar 

  33. Nemhauser GL, Rinnooy Kan AHG, Todd MJ (1989) Preface. Optimization, v -ix. doi:10.1016/s0927-0507(89)01001-7

  34. Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm optimization for tackling operations research problems. In: Proceeding of IEEE 2005 swarm Intelligence Symposium. Pasadena. pp 53–59

  35. Passino MK (2002) Biomimicry of bacterial foraging for distributed optimization and control. Control Syst IEEE 22(3):52–67

    Article  Google Scholar 

  36. Pasquet A (1991) Cooperation and prey capture efficiency in a social spider. Anelosimus eximius (Araneae, Theridiidae). Ethology 90:121–133

    Article  Google Scholar 

  37. Petalas YG, Parsopoulos KE, Vrahatis MN (2007) Memetic particle swarm optimization. Ann oper Res 156:99–127

    Article  MathSciNet  MATH  Google Scholar 

  38. Polak E, Royset JO, Womersley RS (2003) Algorithms with adaptive smoothing for finite minimax problems. J Optim Theory Appl 119:459–484

    Article  MathSciNet  MATH  Google Scholar 

  39. Powell MJD (1978) A fast algorithm for nonlinearly constrained optimization calculations. In: Numerical Analysis, Lecture Notes in Math. 630. Springer, New York, pp 144–157

  40. Rao SS (1994) Engineering optimization-theory and practice. Wiley, New Delhi

    Google Scholar 

  41. Rudolph G (1994) An evolutionary algorithm for integer programming. In: Davidor Y, Schwefel H-P, Manner R (eds) Parallel Problem solving from nature III, vol 866., Lecture notes in computer science notes in computerSpringer, Berlin, pp 139–148

    Chapter  Google Scholar 

  42. Sandgen E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des (ASME) 112:223–229

    Article  Google Scholar 

  43. Schwefel HP (1995) Evolution and optimum seeking. Wiley, New York

    MATH  Google Scholar 

  44. Storn R, Price K (1997) Differential evolutiona simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

  45. Teodorovic D, DellOrco M (2005) Bee colony optimization cooperative learning approach to complex transportation problems. In: Advanced OR and AI Methods in Transportation: Proceedings of 16th MiniEURO Conference and 10th Meeting of EWGT (13-16 September 2005). Publishing House of the Polish Operational and System Research, Poznan, pp 51–60

  46. Tuba M, Bacanin N, Stanarevic N (2012) Adjusted artificial bee colony (ABC) algorithm for engineering problems. WSEAS Trans Comput 11(4):111–120

    Google Scholar 

  47. Tuba M, Subotic M, Stanarevic N (2012) Performance of a modified cuckoo search algorithm for unconstrained optimization problems. WSEAS Trans Syst 11(2):62–74

    Google Scholar 

  48. Wang H, Sun H, Li C, Rahnamayan S, Jeng-shyang P (2013) Diversity enhanced particle swarm optimization with neighborhood. Inf Sci 223:119–135

    Article  MathSciNet  Google Scholar 

  49. Wang Y, Li HX, Huang T, Li L (2014) Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl Soft Comput 18:232–247

    Article  Google Scholar 

  50. Wang Y, Wang BC, Li HX, Yen GG (2015) Incorporating objective function information into the feasibility rule for constrained evolutionary optimization. IEEE Trans Cybernet, 1–15. doi:10.1109/TCYB.2015.2493239

  51. Wilson B (1963) A simplicial algorithm for concave programming. PhD thesis, Harvard University

  52. Xu S (2001) Smoothing method for minimax problems. Comput Optim Appl 20:267–279

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bio-Inspired Comput 2(2):78–84

    Article  Google Scholar 

  54. Yang XS, Deb S (2009) Cuckoo search via levy ights. In: Nature and biologically inspired computing, 2009. NaBIC 2009. World Congress on. IEEE, pp 210–214

  55. Yang XS (2010) A new metaheuristic bat-inspired algorithm. Studies in computational intelligence, pp 65–74. doi:10.1007/978-3-642-12538-6_6

  56. Zuhe S, Neumaier A, Eiermann MC (1990) Solving minimax problems by interval methods. BIT 30:742–751

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewers for constructive feedback and insightful suggestions which greatly improved this article. The research of the 1st author is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). The postdoctoral fellowship of the 2nd author is supported by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Tawhid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawhid, M.A., Ali, A.F. A simplex social spider algorithm for solving integer programming and minimax problems. Memetic Comp. 8, 169–188 (2016). https://doi.org/10.1007/s12293-016-0180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-016-0180-7

Keywords

Navigation