An ensemble classification approach for melanoma diagnosis


Malignant melanoma is the deadliest form of skin cancer, and has, among cancer types, one of the most rapidly increasing incidence rates in the world. Early diagnosis is crucial, since if detected early, its cure is simple. In this paper, we present an effective approach to melanoma identification from dermoscopic images of skin lesions based on ensemble classification. First, we perform automatic border detection to segment the lesion from the background skin. Based on the extracted border, we extract a series of colour, texture and shape features. The derived features are then employed in a pattern classification stage for which we employ a novel, dedicated ensemble learning approach to address the class imbalance in the training data and to yield improved classification performance. Our classifier committee trains individual classifiers on balanced subspaces, removes redundant predictors based on a diversity measure and combines the remaining classifiers using a neural network fuser. Experimental results on a large dataset of dermoscopic skin lesion images show our approach to work well, to provide both high sensitivity and specificity, and our presented classifier ensemble to lead to statistically better recognition performance compared to other dedicated classification algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Alpaydin E (1999) Combined \(5 \times 2\) CV F test for comparing supervised classification learning algorithms. Neural Comput 11(8):1885–1892

    Article  Google Scholar 

  2. 2.

    Argenziano G, Soyer HP, De Giorgi V (2002) Dermoscopy: a tutorial. EDRA Medical Publishing & New Media, Milan

    Google Scholar 

  3. 3.

    Binder M, Schwarz M, Winkler A, Steiner A, Kaider A, Wolff K, Pehamberger H (1995) Epiluminescence microscopy. A useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch Dermatol 131(3):286–291

    Article  Google Scholar 

  4. 4.

    Blaszczynski J, Deckert M, Stefanowski J, Wilk S (2010) Integrating selective pre-processing of imbalanced data with Ivotes ensemble. In: 7th International conference rough sets and current trends in computing, pp 148–157

  5. 5.

    Celebi ME, Aslandogan YA, Stoecker WV, Iyatomi H, Oka H, Chen X (2007) Unsupervised border detection in dermoscopy images. Skin Res Technol 13(4):454–462

    Article  Google Scholar 

  6. 6.

    Celebi ME, Kingravi H, Uddin B, Iyatomi H, Aslandogan A, Stoecker WV, Moss RH (2007) A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph 31(6):362–373

    Article  Google Scholar 

  7. 7.

    Celebi ME, Iyatomi H, Schaefer G, Stoecker WV (2009) Lesion border detection in dermoscopy images. Comput Med Imaging Graph 33(2):148–153

    Article  Google Scholar 

  8. 8.

    Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    MATH  Google Scholar 

  9. 9.

    Chawla NV, Lazarevic A, Hall LO, Bowyer KW (2003) SMOTEBoost: improving prediction of the minority class in boosting. In: 7th European conference on principles and practice of knowledge discovery in database, pp 107–119

  10. 10.

    Deng Y, Manjunath BS (2001) Unsupervised segmentation of color-texture regions in images and video. IEEE Trans Pattern Anal Mach Intell 23(8):800–810

    Article  Google Scholar 

  11. 11.

    Fleming MG, Steger C, Zhang J, Gao J, Cognetta AB, Pollak I, Dyer CR (1998) Techniques for a structural analysis of dermatoscopic imagery. Comput Med Imaging Graph 22(5):375–389

    Article  Google Scholar 

  12. 12.

    Golestani A, Azimi J, Analoui M, Kangavari M (2007) A new efficient fuzzy diversity measure in classifier fusion. In: IADIS international conference of applied computing, pp 722–726

  13. 13.

    Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  14. 14.

    Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) Kernlab, an S4 package for kernel methods. R J Stat Softw 11(9):1–20

    Google Scholar 

  15. 15.

    Koch MW, Moya MM, Hostetler LD, Fogler RJ (1995) Cueing, feature discovery, and one-class learning for synthetic aperture radar automatic target recognition. Neural Netw 8(7–8):1081–1102

    Article  Google Scholar 

  16. 16.

    Krawczyk B, Schaefer G (2012) Effective multiple classier systems for breast thermogram analysis. In: 21st International conference on pattern recognition, pp 3345–3348

  17. 17.

    Krawczyk B, Schaefer G, Wozniak M (2013) Combining one-class classifiers for imbalanced classification of breast thermogram features. In: 4th International workshop on computational intelligence in medical imaging, 2013. Held as part of IEEE symposium series on computational intelligence

  18. 18.

    Krawczyk B, Schaefer G, Wozniak M (2013) A cost-sensitive ensemble classifier for breast cancer classification. In: IEEE 8th international symposium on applied computational intelligence and informatics, pp 427–430

  19. 19.

    Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley-Interscience, New Jersey

    Google Scholar 

  20. 20.

    Liu X, Wu J, Zhou Z (2009) Exploratory undersampling for class-imbalance learning. IEEE Trans Syst Man Cybern Part B Cybern 39(2):539–550

    Article  Google Scholar 

  21. 21.

    Liu Y, Chawla NV, Harper MP, Shriberg E, Stolcke A (2006) A study in machine learning from imbalanced data for sentence boundary detection in speech. Comput Speech Lang 20:468–494

    Article  Google Scholar 

  22. 22.

    Menzies SW, Crotty KA, Ingwar C, McCarth WH (2003) An atlas of surface microscopy of pigmented skin lesions: dermoscopy, 2nd edn. McGraw-Hill, Sydney

    Google Scholar 

  23. 23.

    Nakashima T, Yokota Y, Ishibuchi H, Schaefer G, Drastich A, Zavisek M (2007) Constructing cost-sensitive fuzzy rule-based classification systems for pattern classification problems. J Adv Comput Intell Intell Inf 11(6):546–553

    Google Scholar 

  24. 24.

    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA: Cancer J Clin 63(1):11–30

    Google Scholar 

  25. 25.

    Steiner K, Binder M, Schemper M, Wolff K, Pehamberger H (1993) Statistical evaluation of epiluminescence dermoscopy criteria for melanocytic pigmented lesions. J Am Acad Dermatol 29(4):581–588

    Article  Google Scholar 

  26. 26.

    Sun Y, Kamel MS, Wong AKC, Wang Y (2007) Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit 40(12):3358–3378

  27. 27.

    Vapnik VN (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  28. 28.

    Wang S, Yao X (2009) Diversity analysis on imbalanced data sets by using ensemble models. In: IEEE symposium on computational intelligence and data mining, pp 324–331

  29. 29.

    Wozniak M, Zmyslony M (2010) Designing combining classifier with trained fuser—analytical and experimental evaluation. Neural Netw World 20(7):925–934

    Google Scholar 

  30. 30.

    Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5:1205–1224

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gerald Schaefer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schaefer, G., Krawczyk, B., Celebi, M.E. et al. An ensemble classification approach for melanoma diagnosis. Memetic Comp. 6, 233–240 (2014).

Download citation


  • Medical imaging
  • Skin lesion analysis
  • Melanoma diagnosis
  • Ensemble classification
  • Imbalanced classification