Skip to main content
Log in

Thymol Enhances 5-Fluorouracil Cytotoxicity by Reducing Migration and Increasing Apoptosis and Cell Cycle Arrest in Esophageal Cancer Cells: An In-vitro Study

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Esophageal cancer (EC) is a common cancer globally and has a low survival rate because it is often diagnosed at a late-stage, and is frequently chemotherapy resistant. Thymol is found in the herb thyme and has been reported to have potential anticancer properties. We aimed to explore the effects of thymol on the efficacy of 5-Fluorouracil (5-FU) treatment in an in vitro model of EC. We evaluated the synergistic effects of thymol with 5-FU using cell viability, apoptosis, cell cycle analysis, scratch wound healing assay, gelatin zymography, as well as reactive oxygen species (ROS) generation aproaches. The results indicated that thymol significantly decreased the viability of KYSE-30 cells in a time and dose-dependently. However, thymol had a minimal cytotoxic effect against normal fibroblasts. In addition, thymol significantly increased the chemosensitivity of EC KYSE-30 cells to 5-FU by promoting early and late apoptosis, inducing Sub-G1 and G2/M cell cycle arrest, and increasing ROS generation. Combination therapy of thymol with 5-FU also resulted in an increased expression of p53 and Bax, decreased expression of Bcl2, reduced activity of MMP-2, and reduced cell migration compared to single therapies. These findings suggest that thymol has the potential to promote the anticancer potency of 5-FU chemotherapy and inhibit metastasis. However, further studies using animal models are necessary to validate these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu CQ, Ma YL, Qin Q, Wang PH, Luo Y, Xu PF, et al. Epidemiology of esophageal cancer in 2020 and projections to 2030 and 2040. Thoracic cancer. 2023;14(1):3–11. https://doi.org/10.1111/1759-7714.14745.

    Article  PubMed  Google Scholar 

  2. Peery AF, Crockett SD, Barritt AS, Dellon ES, Eluri S, Gangarosa LM, et al. Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology. 2015;149(7):1731-41.e3. https://doi.org/10.1053/j.gastro.2015.08.045.

    Article  PubMed  Google Scholar 

  3. Watanabe M, Otake R, Kozuki R, Toihata T, Takahashi K, Okamura A, et al. Recent progress in multidisciplinary treatment for patients with esophageal cancer. Surg Today. 2020;50(1):12–20. https://doi.org/10.1007/s00595-019-01878-7.

    Article  PubMed  Google Scholar 

  4. Waters JK, Reznik SI. Update on management of squamous cell esophageal cancer. Curr Oncol Rep. 2022;24(3):375–85. https://doi.org/10.1007/s11912-021-01153-4.

    Article  CAS  PubMed  Google Scholar 

  5. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–8. https://doi.org/10.1038/nrc1074.

    Article  CAS  PubMed  Google Scholar 

  6. Ku GY. Systemic therapy for esophageal cancer: chemotherapy. Chin Clin Oncol. 2017;6(5):49. https://doi.org/10.21037/cco.2017.07.06.

    Article  PubMed  Google Scholar 

  7. Ciardiello D, Martini G, Famiglietti V, Napolitano S, De Falco V, Troiani T, et al. Biomarker-guided anti-egfr rechallenge therapy in metastatic colorectal cancer. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13081941.

    Article  PubMed  Google Scholar 

  8. Kojima T, Shah MA, Muro K, Francois E, Adenis A, Hsu CH, et al. Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J Clin Oncol. 2020;38(35):4138–48. https://doi.org/10.1200/jco.20.01888.

    Article  CAS  PubMed  Google Scholar 

  9. Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du D, et al. IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis. J Exp Clin Cancer Res. 2022;41(1):347. https://doi.org/10.1186/s13046-022-02550-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Yang W, Wang Q, Zhou Y. Mechanisms of esophageal cancer metastasis and treatment progress. Front Immunol. 2023;14:1206504. https://doi.org/10.3389/fimmu.2023.1206504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang M, Lu JJ, Ding J. Natural products in cancer therapy: past present and future. Nat Prod Bioprospect. 2021;11(1):5–13. https://doi.org/10.1007/s13659-020-00293-7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karpanen TJ, Worthington T, Hendry ER, Conway BR, Lambert PA. Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J Antimicrob Chemother. 2008;62(5):1031–6. https://doi.org/10.1093/jac/dkn325.

    Article  CAS  PubMed  Google Scholar 

  13. Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol. 2017;8:380. https://doi.org/10.3389/fphar.2017.00380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aljelehawy QHA, Mohammadi S, Mohamadian E, RajiMalAllah O, Mirzaei A, Ghahremanlou M. Antimicrobial, anticancer, antidiabetic, antineurodegenerative, and antirheumatic activities of thymol: clarification of mechanisms. Micro Nano Bio Aspects. 2023;2(1):1–7. https://doi.org/10.22034/mnba.2023.381107.1019.

    Article  Google Scholar 

  15. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019. https://doi.org/10.1056/NEJMra1713263.

    Article  PubMed  Google Scholar 

  16. Li Y, Wen JM, Du CJ, Hu SM, Chen JX, Zhang SG, et al. Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis. Biochem Biophys Res Commun. 2017;491(2):530–6. https://doi.org/10.1016/j.bbrc.2017.04.009.

    Article  CAS  PubMed  Google Scholar 

  17. De La Chapa JJ, Singha PK, Lee DR, Gonzales CB. Thymol inhibits oral squamous cell carcinoma growth via mitochondria-mediated apoptosis. J Oral Pathol Med. 2018;47(7):674–82. https://doi.org/10.1111/jop.12735.

    Article  CAS  PubMed  Google Scholar 

  18. Chauhan AK, Bahuguna A, Paul S, Kang SC. Thymol elicits HCT-116 colorectal carcinoma cell death through induction of oxidative stress. Anticancer Agents Med Chem. 2018;17(14):1942–50. https://doi.org/10.2174/1871520617666170327121228.

    Article  CAS  PubMed  Google Scholar 

  19. Fekri Kohan S, Zamani H, Salehzadeh A. Antibacterial potential and cytotoxic activity of iron oxide nanoparticles conjugated with thymol (Fe(3)O(4)@Glu-thymol) on breast cancer cells and investigating the expression of BAX, CASP8, and BCL-2 genes. Biometals. 2023;36(6):1273–84. https://doi.org/10.1007/s10534-023-00516-7.

    Article  CAS  PubMed  Google Scholar 

  20. Qoorchi Moheb Seraj F, Heravi-Faz N, Soltani A, Ahmadi SS, Shahbeiki F, Talebpour A, et al. Thymol has anticancer effects in U-87 human malignant glioblastoma cells. Mol Biol Rep. 2022;49(10):9623–32. https://doi.org/10.1007/s11033-022-07867-3.

    Article  CAS  PubMed  Google Scholar 

  21. Martinotti S, Ranzato E. Scratch wound healing assay. Methods Mol Biol. 2020;2109:225–9. https://doi.org/10.1007/7651_2019_259.

    Article  CAS  PubMed  Google Scholar 

  22. Toth M, Fridman R. Assessment of gelatinases (MMP-2 and MMP-9 by gelatin zymography. Methods Mol Med. 2001;57:163–74. https://doi.org/10.1385/1-59259-136-1:163.

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi H, Miyata H, Gotoh M, Kitagawa Y, Baba H, Kimura W, et al. A risk model for esophagectomy using data of 5354 patients included in a Japanese nationwide web-based database. Ann Surg. 2014;260(2):259–66. https://doi.org/10.1097/sla.0000000000000644.

    Article  PubMed  Google Scholar 

  24. Mao C, Zeng X, Zhang C, Yang Y, Xiao X, Luan S, et al. Mechanisms of pharmaceutical therapy and drug resistance in esophageal cancer. Front Cell Dev Biol. 2021;9: 612451. https://doi.org/10.3389/fcell.2021.612451.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Talib WH, Alsayed AR, Barakat M, Abu-Taha MI, Mahmod AI. Targeting drug chemo-resistance in cancer using natural products. Biomedicines. 2021;9(10):1353. https://doi.org/10.3390/biomedicines9101353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blažíčková M, Blaško J, Kubinec R, Kozics K. Newly synthesized thymol derivative and its effect on colorectal cancer cells. Molecules. 2022. https://doi.org/10.3390/molecules27092622.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yeh JH, Chou CT, Chen IS, Lu T, Lin KL, Yu CC, et al. Effect of thymol on Ca2+ homeostasis and viability in PC3 human prostate cancer cells. Chin J Physiol. 2017;60(1):32–40. https://doi.org/10.4077/cjp.2017.Baf447.

    Article  CAS  PubMed  Google Scholar 

  28. Dashtaki A, Mahjoub S, Zabihi E, Pourbagher R. The effects of pre-treatment and post-treatment of thymol against tert-butyl hydroperoxide (t-BHP) cytotoxicity in MCF-7 cell line and fibroblast derived foreskin. Rep Biochem Mol Biol. 2020;9(3):338–47. https://doi.org/10.29252/rbmb.9.3.338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deb DD, Parimala G, Saravana Devi S, Chakraborty T. Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem Biol Interact. 2011;193(1):97–106. https://doi.org/10.1016/j.cbi.2011.05.009.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed OM, Galaly SR, Mostafa M-AMA, Eed EM, Ali TM, Fahmy AM, et al. Thyme oil and thymol counter doxorubicin-induced hepatotoxicity via modulation of inflammation, apoptosis, and oxidative stress. Oxid Med Cell Longev. 2022;2022:6702773. https://doi.org/10.1155/2022/6702773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. EM E-S, AR A-A, AM M, AA E-A. Thymol and carvacrol prevent cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. Oxid Med Cell Longev. 2015;29(4):165–72. https://doi.org/10.1002/jbt.21681.

    Article  CAS  Google Scholar 

  32. Vadlapatla RK, Vadlapudi AD, Pal D, Mitra AK. Mechanisms of drug resistance in cancer chemotherapy: coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr Pharm Des. 2013;19(40):7126–40. https://doi.org/10.2174/13816128113199990493.

    Article  CAS  PubMed  Google Scholar 

  33. Elbe H, Yigitturk G, Cavusoglu T, Uyanikgil Y, Ozturk F. Apoptotic effects of thymol, a novel monoterpene phenol, on different types of cancer. Bratisl Lek Listy. 2020;121(2):122–8. https://doi.org/10.4149/bll_2020_016.

    Article  CAS  PubMed  Google Scholar 

  34. Balan DJ, Rajavel T, Das M, Sathya S, Jeyakumar M, Devi KP. Thymol induces mitochondrial pathway-mediated apoptosis via ROS generation, macromolecular damage and SOD diminution in A549 cells. Pharmacol Rep. 2021;73(1):240–54. https://doi.org/10.1007/s43440-020-00171-6.

    Article  CAS  PubMed  Google Scholar 

  35. Lohan-Codeço M, Barambo-Wagner ML, Nasciutti LE, Ribeiro Pinto LF, Meireles Da Costa N, Palumbo A Jr. Molecular mechanisms associated with chemoresistance in esophageal cancer. Cell Mol Life Sci. 2022;79(2):116. https://doi.org/10.1007/s00018-022-04131-6.

    Article  CAS  PubMed  Google Scholar 

  36. Warren CFA, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019;10(3):177. https://doi.org/10.1038/s41419-019-1407-6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sjöström J, Blomqvist C, von Boguslawski K, Bengtsson NO, Mjaaland I, Malmström P, et al. The predictive value of bcl-2, bax, bcl-xL, bag-1, fas, and fasL for chemotherapy response in advanced breast cancer. Clin Cancer Res. 2002;8(3):811–6.

    PubMed  Google Scholar 

  38. NavaneethaKrishnan S, Rosales JL, Lee KY. ROS-mediated cancer cell killing through dietary phytochemicals. Oxid Med Cell Longev. 2019;2019:9051542. https://doi.org/10.1155/2019/9051542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan X, Zhang X, Sun H, Zhang J, Yan M, Zhang H. Autophagy inhibition promotes 5-fluorouraci-induced apoptosis by stimulating ROS formation in human non-small cell lung cancer A549 cells. PLoS ONE. 2013;8(2): e56679. https://doi.org/10.1371/journal.pone.0056679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Amani M, Najafzadeh N. All-trans retinoic acid combination with cisplatin and 5-fluorouracil promote cytotoxic effect on AGS and KYSE-30 cell lines. J Adv Med Med Res. 2015;23(97):21–33.

    Google Scholar 

  41. Jing SW, Zhai C, Zhang W, He M, Liu QY, Yao JF, et al. Comparison of neoadjuvant immunotherapy plus chemotherapy versus chemotherapy alone for patients with locally advanced esophageal squamous cell carcinoma: a propensity score matching. Front Immunol. 2022;13: 970534. https://doi.org/10.3389/fimmu.2022.970534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Makino T, Yamasaki M, Tanaka K, Yamashita K, Urakawa S, Ishida T, et al. Multicenter randomised trial of two versus three courses of preoperative cisplatin and fluorouracil plus docetaxel for locally advanced oesophageal squamous cell carcinoma. Br J Cancer. 2022;126(11):1555–62. https://doi.org/10.1038/s41416-022-01726-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Samantaray S, Sharma R, Chattopadhyaya TK, Gupta SD, Ralhan R. Increased expression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2004;130(1):37–44. https://doi.org/10.1007/s00432-003-0500-4.

    Article  CAS  PubMed  Google Scholar 

  44. Zeng Q, Che Y, Zhang Y, Chen M, Guo Q, Zhang W. Thymol isolated from Thymus vulgaris L. inhibits colorectal cancer cell growth and metastasis by suppressing the Wnt/β-catenin pathway. Drug Des Devel Ther. 2020;14:2535–47. https://doi.org/10.2147/dddt.S254218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lv R, Chen Z. Thymol inhibits cell migration and invasion by downregulating the activation of PI3K/AKT and ERK pathways in human colon cancer cells. Trop J Pharm Res. 2017;16(12):2895–901.

    Article  CAS  Google Scholar 

  46. Lee KP, Kim JE, Park WH, Hong H. Regulation of C6 glioma cell migration by thymol. Oncol Lett. 2016;11(4):2619–24. https://doi.org/10.3892/ol.2016.4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the assistance of the Clinical Research Development Unit of Akbar Hospital, Mashhad in conducting this research.We also would like to thank the Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, for their assistance in this manuscript.

Funding

This study is supported by Mashhad University of Medical Sciences, Mashhad, Iran (grant code: 4021071).

Author information

Authors and Affiliations

Authors

Contributions

A.B, G.P, N.A, Y.M, A.Kh, F.A-M, and F.Q.M.S: Methodology, Investigation, Formal analysis, Conceptualization, Writing—Original Draft. G.A.F and A.B: Supervision, Funding acquisition, Validation, Resources, Project administration, Writing—Review & Editing.

Corresponding author

Correspondence to Afsane Bahrami.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouyamanesh, G., Ameli, N., Metanat, Y. et al. Thymol Enhances 5-Fluorouracil Cytotoxicity by Reducing Migration and Increasing Apoptosis and Cell Cycle Arrest in Esophageal Cancer Cells: An In-vitro Study. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01219-7

Keywords

Navigation