Skip to main content
Log in

The Combined Impact of Curcumin: Piperine and Sorafenib on microRNAs and Different Pathways in Breast Cancer Cells

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Breast cancer is the most common malignancy in the women. Chemotherapy is a crucial part of breast cancer treatment especially for advanced and metastatic forms of the disease. However, chemotherapy has limitations due to tumor heterogeneity, chemoresistance, and side effects. There is potential in combining chemotherapeutic drugs with natural items to enhance their effectiveness against cancer. In this study, we examined the synergistic effects of combining curcumin: piperine with sorafenib on the progression of breast cancer cells by altering many pathways associated with cancer and regulating the expression of numerous microRNAs. We tested the cytotoxic impact of curcumin: piperine on MCF-7 breast cancer cells using SRB assay. We analyzed the expression levels of selected microRNAs, genes, and proteins related to cancer stem cells, epithelial-mesenchymal transition, apoptosis and cell cycle progression using qPCR, ELISA and flow cytometry techniques. The findings of this study demonstrated that sorafenib and curcumin: piperine together enhances the suppression of MCF-7 cell survival. Molecular genetic analysis revealed that this combination provoked downregulation in oncomirs [miR-21 and miR-155], vimentin, Snail1, Notch, TGF-β1, Smad4, β-catenin1 and Wnt10b genes. Meanwhile, there were upregulation of tumor suppressor miRNAs [miR-28, miR-139 and miR-149] and E-cadherin gene expression level. Also, this combination resulted in a decrease of vimentin, IL-6, STAT3 and MMP-9; an increase of E-cadherin protein levels. Moreover, this combination induced apoptotic cell death and arrested cell cycles at specific phases. This study suggests that the combination of sorafenib and curcumin: piperine can combat breast cancer by modulating several microRNAs and signaling pathways involved in the development and progression of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  CAS  PubMed  Google Scholar 

  2. Ghufran MS, Soni P, Duddukuri GR. The global concern for cancer emergence and its prevention: a systematic unveiling of the present scenario. In: Arunachalam K, Yang X, Sasidharan SP, editors. Bioprospecting of tropical medicinal plants. Cham: Springer; 2023. p. 1429–55. https://doi.org/10.1007/978-3-031-28780-0_60.

    Chapter  Google Scholar 

  3. Anjum F, Razvi N, Masood MA. Breast cancer therapy: a mini review. MOJ Drug Des Develop Ther. 2017;1(2):35–8. https://doi.org/10.15406/mojddt.2017.01.00006.

    Article  Google Scholar 

  4. Ju J, Zhu AJ, Yuan P. Progress in targeted therapy for breast cancer. Chronic Diseases Transl Med. 2018;4(3):164–75. https://doi.org/10.1016/j.cdtm.2018.04.002.

    Article  Google Scholar 

  5. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–43. https://doi.org/10.18632/oncotarget.16723.

    Article  PubMed Central  Google Scholar 

  6. Johnson-Arbor K, Dubey R. Doxorubicin. 2023 Aug 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. PMID 29083582.

  7. Soe ZC, Kwon JB, Thapa RK, Ou W, Nguyen HT, Gautam M, et al. Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells. Pharmaceutics. 2019;11(2):63. https://doi.org/10.3390/pharmaceutics11020063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wigner P, Zielinski K, Labieniec-Watala M, Marczak A, Szwed M. Doxorubicin–transferrin conjugate alters mitochondrial homeostasis and energy metabolism in human breast cancer cells. Sci Rep. 2021;11(1):4544. https://doi.org/10.1038/s41598-021-84146-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martin HL, Smith L, Tomlinson DC. Multidrug-resistant breast cancer: current perspectives. Breast Cancer: Targets Therapy. 2014. https://doi.org/10.2147/BCTT.S37638.

    Article  PubMed  Google Scholar 

  10. Taylor CW, Dalton WS, Parrish PR, Gleason MC, Bellamy WT, Thompson FH, et al. Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. Br J Cancer. 1991;63(6):923–9. https://doi.org/10.1038/bjc.1991.202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brizzi MP, Pignataro D, Tampellini M, Scagliotti GV, Di Maio M. Systemic treatment of hepatocellular carcinoma: why so many failures in the development of new drugs. Expert Rev Anticancer Therapy. 2016;16(10):1053–62. https://doi.org/10.1080/14737140.2016.1227706.

    Article  CAS  Google Scholar 

  12. Malenstein H, Verslype C, Windmolders P, Libbrecht L, Nevens F, Pelt J. Long-term sorafenib exposure in hepatocellular cancer cell lines: resistance, risk of rebound growth and epithelial to mesenchymal transition. In: Poster presented at the 46th annual meeting of the European Association for the study of the liver; Berlin, Germany; 2011. http://www1.easl.eu/easl2011/program/Posters/Abstract380.htm.

  13. Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, et al. Natural products as anticancer agents: current status and future perspectives. Molecules. 2022;27(23):8367. https://doi.org/10.3390/molecules27238367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Damery S, Gratus C, Grieve R, Warmington S, Jones J, Routledge P, et al. The use of herbal medicines by people with cancer: a cross-sectional survey. Br J Cancer. 2011;104(6):927–33. https://doi.org/10.1038/bjc.2011.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kong WY, Ngai SC, Goh BH, Lee LH, Htar TT, Chuah LH. Is curcumin the answer to future chemotherapy cocktail. Molecules. 2021;26(14):4329. https://doi.org/10.3390/molecules26144329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farghadani R, Naidu R. Curcumin: modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancers. 2021;13(14):3427. https://doi.org/10.3390/cancers13143427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gadag S, Narayan R, Nayak AS, Ardila DC, Sant S, Nayak Y, et al. Development and preclinical evaluation of microneedle-assisted resveratrol loaded nanostructured lipid carriers for localized delivery to breast cancer therapy. Int J Pharm. 2021;606:120877. https://doi.org/10.1016/j.ijpharm.2021.120877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deng L, Wu X, Zhu X, Yu Z, Liu Z, Wang J, et al. Combination effect of curcumin with docetaxel on the PI3K/AKT/mTOR pathway to induce autophagy and apoptosis in esophageal squamous cell carcinoma. Am J Transl Res. 2021;13(1):57.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(04):353–6. https://doi.org/10.1055/s-2006-957450.

    Article  CAS  PubMed  Google Scholar 

  20. Mahran RI, Hagras MM, Sun D, Brenner DE. Bringing curcumin to the clinic in cancer prevention: a review of strategies to enhance bioavailability and efficacy. AAPS J. 2017;19:54–81. https://doi.org/10.1208/s12248-016-0003-2.

    Article  CAS  PubMed  Google Scholar 

  21. Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;302(2):645–50. https://doi.org/10.1124/jpet.102.034728.

    Article  CAS  PubMed  Google Scholar 

  22. Shamsi S, Tran H, Tan RS, Tan ZJ, Lim LY. Curcumin, piperine, and capsaicin: a comparative study of spice-mediated inhibition of human cytochrome P450 isozyme activities. Drug Metab Dispos. 2017;45(1):49–55. https://doi.org/10.1124/dmd.116.073213.

    Article  CAS  PubMed  Google Scholar 

  23. Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine: a review of its biological effects. Phytother Res. 2021;35(2):680–700. https://doi.org/10.1002/ptr.6855.

    Article  CAS  PubMed  Google Scholar 

  24. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11(7):537–61. https://doi.org/10.2174/138920210793175895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: from dietary sources to human microRNA modulation. Molecules. 2019;25(1):63. https://doi.org/10.3390/molecules25010063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI J Natl Cancer Inst. 1990;82(13):1107–12. https://doi.org/10.1093/jnci/82.13.1107.

    Article  CAS  PubMed  Google Scholar 

  27. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protocols. 2008;3(6):1101–8. https://doi.org/10.1038/nprot.2008.73.

    Article  CAS  PubMed  Google Scholar 

  28. Dean PN, Jett JH. Mathematical analysis of DNA distributions derived from flow microfluorometry. J Cell Biol. 1974;60(2):523. https://doi.org/10.1083/jcb.60.2.523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soerjomataram I, Bray F. Planning for tomorrow: global cancer incidence and the role of prevention 2020–2070. Nat Rev Clin Oncol. 2021;18(10):663–72. https://doi.org/10.1038/s41571-021-00514-z.

    Article  PubMed  Google Scholar 

  30. Bolat ZB, Islek Z, Demir BN, Yilmaz EN, Sahin F, Ucisik MH. Curcumin-and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model. Front Bioeng Biotechnol. 2020;8:50. https://doi.org/10.3389/fbioe.2020.00050.

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Cicco P, Catani MV, Gasperi V, Sibilano M, Quaglietta M, Savini I. Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients. 2019;11(7):1514. https://doi.org/10.3390/nu11071514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai F, Chen L, Sun Y, He C, Fu D, Tang J. MiR-539 inhibits the malignant behavior of breast cancer cells by targeting SP1. Biochem Cell Biol. 2020;98(3):426–33. https://doi.org/10.1139/bcb-2019-0111.

    Article  CAS  PubMed  Google Scholar 

  33. Sánchez-González I, Bobien A, Molnar C, Schmid S, Strotbek M, Boerries M, Olayioye MA. miR-149 suppresses breast cancer metastasis by blocking paracrine interactions with macrophages. Cancer Res. 2020;80(6):1330–41. https://doi.org/10.1158/0008-5472.CAN-19-1934.

    Article  PubMed  Google Scholar 

  34. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14(11):2348–60. https://doi.org/10.1261/rna.1034808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C, et al. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer. 2019;19:1–13. https://doi.org/10.1186/s12885-019-5951-3.

    Article  CAS  Google Scholar 

  36. Liu J, Li C, Jiang Y, Wan Y, Zhou S, Cheng W. Tumor-suppressor role of miR-139-5p in endometrial cancer. Cancer Cell Int. 2008;18:1–9. https://doi.org/10.1186/s12935-018-0545-8.

    Article  CAS  Google Scholar 

  37. Ma L, Zhang Y, Hu F. miR-28-5p inhibits the migration of breast cancer by regulating WSB2. Int J Mol Med. 2020;46(4):1562–70. https://doi.org/10.3892/ijmm.2020.4685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mattiske S, Suetani RJ, Neilsen PM, Callen DF. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomark Prev. 2012;21(8):1236–43. https://doi.org/10.1158/1055-9965.

    Article  CAS  Google Scholar 

  39. Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;70(8):3119–27. https://doi.org/10.1158/0008-5472.

    Article  PubMed  Google Scholar 

  40. Gallardo M, Kemmerling U, Aguayo F, Bleak TC, Muñoz JP, Calaf GM. Curcumin rescues breast cells from epithelial-mesenchymal transition and invasion induced by anti-miR-34a. Int J Oncol. 2020;56(2):480–93. https://doi.org/10.3892/ijo.2019.4939.

    Article  CAS  PubMed  Google Scholar 

  41. Prieto-Garcia E, Díaz-García CV, García-Ruiz I, Agulló-Ortuño MT. Epithelial-to-mesenchymal transition in tumor progression. Med Oncol. 2017;34:1–10. https://doi.org/10.1007/s12032-017-0980-8.

    Article  CAS  Google Scholar 

  42. Bahrami A, Majeed M, Sahebkar A. Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition. Cell Oncol. 2019;42(4):405–21. https://doi.org/10.1007/s13402-019-00442-2.

    Article  CAS  Google Scholar 

  43. Xiong R, Yin T, Gao J, Yuan Y. HOXD9 activates the TGF-beta/smad signaling pathway to promote gastric cancer. OncoTargets Ther. 2020;13:2163–72. https://doi.org/10.2147/OTT.S234829.

    Article  CAS  Google Scholar 

  44. Horn LA, Riskin J, Hempel HA, Fousek K, Lind H, Hamilton DH, et al. Simultaneous inhibition of CXCR1/2, TGF-beta, and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity. J Immunother Cancer. 2020;8(1): e000326. https://doi.org/10.1136/jitc-2019-000326.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gold LI. The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog. 1999;10:303–60.

    CAS  PubMed  Google Scholar 

  46. Marques da Fonseca L, Jacques da Silva LR, Santos dos Reis J, Rodrigues da Costa Santos MA, de Sousa CV, Monteiro da Costa K, et al. Piperine inhibits TGF-β signaling pathways and disrupts EMT-related events in human lung adenocarcinoma cells. Medicines. 2020;7(4):19. https://doi.org/10.3390/medicines7040019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Limtrakul P, Chearwae W, Shukla S, Phisalphong C, Ambudkar SV. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol Cell Biochem. 2007;296:85–95. https://doi.org/10.1007/s11010-006-9302-8.

    Article  CAS  PubMed  Google Scholar 

  48. Singh S, Khar A. Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anticancer Agents Med Chem. 2006;6:259–70. https://doi.org/10.2174/187152006776930918.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH. Retracted: Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer. 2006;106:2503–13. https://doi.org/10.1002/cncr.21904.

    Article  CAS  PubMed  Google Scholar 

  50. Roma J, Almazán-Moga A, Sánchez de Toledo J, Gallego S. Notch, Wnt, and Hedgehog pathways in rhabdomyosarcoma: from single pathways to an integrated network. Sarcoma. 2012;2012:695603. https://doi.org/10.1155/2012/695603.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim YS, Farrar W, Colburn NH, Milner JA. Cancer stem cells: potential targets for bioactive food components. J Nutr Biochem. 2012;23:691–8. https://doi.org/10.1016/j.jnutbio.2012.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rizzo P, Osipo C, Foreman K, Golde T, Osborne B, Miele L. Rational targeting of Notch signaling in cancer. Oncogene. 2008;27:5124–31. https://doi.org/10.1038/onc.2008.226.

    Article  CAS  PubMed  Google Scholar 

  53. Olsauskas-Kuprys R, Zlobin A, Osipo C. Gamma secretase inhibitors of Notch signaling. Onco Targets Ther. 2013;6:943–55. https://doi.org/10.2147/OTT.S33766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S, et al. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS ONE. 2012;7: e30590. https://doi.org/10.1371/journal.po.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kakarala M, Brenner DE, Khorkaya H, Cheng C, Tazi K, Ginestier C, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat. 2010;122(3):777–85. https://doi.org/10.1007/s10549-009-0612-x.

    Article  CAS  PubMed  Google Scholar 

  56. Choi JW, Lee SK, Kim MJ, Kim DG, Shin JY, Zhou Z, et al. Piperine ameliorates the severity of fibrosis via inhibition of TGFbeta/SMAD signaling in a mouse model of chronic pancreatitis. Mol Med Rep. 2019;20:3709–18. https://doi.org/10.3892/mmr.2019.10635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zugmaier G, Ennis BW, Deschauer B, Katz D, Knabbe C, Wilding G, et al. Transforming growth factors type β1 and β2 are equipotent growth inhibitors of human breast cancer cell lines. J Cell Physiol. 1989;141(2):353–61. https://doi.org/10.1002/jcp.1041410217.

    Article  CAS  PubMed  Google Scholar 

  58. de Kruijf EM, Dekker TJA, Hawinkels LJACH, Putter VTHBM, Smit JR, Kroep PJK, et al. The prognostic role of TGF-β signaling pathway in breast cancer patients. Ann Oncol. 2013;24:384–90. https://doi.org/10.1093/annonc/mds333.

    Article  PubMed  Google Scholar 

  59. Thacker PC, Karunagaran D. Curcumin and emodin down-regulate tgf-β signaling pathway in human cervical cancer cells. PLoS ONE. 2015;10(3): e0120045. https://doi.org/10.1371/journal.pone.0120045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kakarala M, Brenner D, Wicha M, Dontu G. Curcumin and piperine may prevent breast cancer by modulating stem cell fate. Cancer Res. 2008;68:4606. https://doi.org/10.1007/s10549-009-0612-x.

    Article  CAS  Google Scholar 

  61. de Almeida GC, Oliveira LF, Predes D, Fokoue HH, Kuster RM, Oliveira FL, et al. Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells. Sci Rep. 2020;10(1):11681. https://doi.org/10.1038/s41598-020-68574-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ryu MJ, Cho M, Song JY, Yun YS, Choi IW, Kim DE, et al. Natural derivatives of curcumin attenuate the Wnt/β-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem Biophys Res Commun. 2008;377(4):1304–8. https://doi.org/10.1016/j.bbrc.2008.10.171.

    Article  CAS  PubMed  Google Scholar 

  63. Hassan ZK, Daghestani MH. Curcumin effect on MMPs and TIMPs genes in a breast cancer cell line. Asian Pacific J Cancer Prev. 2012;13:3259–64. https://doi.org/10.7314/apjcp.2012.13.7.3259.

    Article  Google Scholar 

  64. Zare Z, Dizaj TN, Lohrasbi A, Sheikhalishahi ZS, Panji M, Hosseinabadi F, et al. The effect of piperine on MMP-9, VEGF, and E-cadherin expression in breast cancer MCF-7 cell line. Basic Clin Cancer Res. 2021;12(3):112–9. https://doi.org/10.18502/bccr.v12i3.5767.

    Article  Google Scholar 

  65. Kang DW, Park MH, Lee YJ, Kim HS, Kwon TK, Park WS, et al. Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFkappaB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J Biol Chem. 2008;283:4094–104. https://doi.org/10.1074/jbc.M707416200.

    Article  CAS  PubMed  Google Scholar 

  66. Berrak Ö, Akkoç Y, Arısan ED, Çoker-Gürkan A, Obakan-Yerlikaya P, Palavan-Ünsal N. The inhibition of PI3K and NF-κB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells. Biomed Pharmacother. 2016;77:150–60. https://doi.org/10.1016/j.biopha.2015.12.007.

    Article  CAS  PubMed  Google Scholar 

  67. Liu JL, Pan YY, Chen O, Luan Y, Xue X, Zhao JJ, et al. Curcumin inhibits MCF-7 cells by modulating the NF-κB signaling pathway. Oncol Lett. 2017;14:5581–4. https://doi.org/10.3892/ol.2017.6860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ying X, Kehe Y, Chen X, Chen H, Hong J, Cheng S, et al. Piperine inhibits LPS induced expression of inflammatory mediators in RAW 264.7 cells. Cell Immunol. 2013;285(1–2):49–54. https://doi.org/10.1016/j.cellimm.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  69. Man S, Yao J, Lv P, Liu Y, Yang L, Ma L. Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment. Food Funct. 2020;11:6422. https://doi.org/10.1039/C9FO01901D.

    Article  CAS  PubMed  Google Scholar 

  70. Song L, Wang Y, Zhen Y, Li D, He X, Yang H, et al. Piperine inhibits colorectal cancer migration and invasion by regulating STAT3/Snail-mediated epithelial–mesenchymal transition. Biotech Lett. 2020;42:2049–58. https://doi.org/10.1007/s10529-020-02923-z.

    Article  CAS  Google Scholar 

  71. Xu J, Lin H, Wu G, Zhu M, Li M. IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma. Front Oncol. 2021;11: 760971. https://doi.org/10.3389/fonc.2021.760971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paciotti J, Condori-Salas R, Rojas-Humpire R, Pino-Figueroa A. Effect of curcumin on the production of interleukin-6 from MDA-MB-231 breast cancer cells. FASEB J. 2015. https://doi.org/10.1096/fasebj.29.1_supplement.lb534.

    Article  Google Scholar 

  73. Duan Z, Xie H, Yu S, Wang S, Yang H. Piperine derived from piper nigrum l. inhibits lps-induced inflammatory through the mapk and nf-κb signalling pathways in Raw264.7cells. Foods. 2022;11(19):2990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xia Y, Khoi PN, Yoon HJ, Lian S, Joo YE, Chay KO, et al. Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells. Mol Cell Biochem. 2015;398(1–2):147–56. https://doi.org/10.1007/s11010-014-2214-0.

    Article  CAS  PubMed  Google Scholar 

  75. Yang CL, Liu YY, Ma YG, Xue YX, Liu DG, Ren Y, et al. Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PLoS ONE. 2012;7(5): e37960. https://doi.org/10.1371/journal.pone.0037960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pachauri M, Gupta ED, Ghosh PC. Piperine loaded PEG-PLGA nanoparticles: preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. J Drug Deliv Sci Technol. 2015;29:269–82. https://doi.org/10.1016/j.jddst.2015.08.009.

    Article  CAS  Google Scholar 

  77. Khamis AAA, Ali EMM, El-Moneim MAA, Abd-Alhaseeb MM, El-Magd MA, Salim EI. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed Pharmacother. 2018;105:1335–43. https://doi.org/10.1016/j.biopha.2018.06.105.

    Article  CAS  PubMed  Google Scholar 

  78. Ouyang DY, Zeng LH, Pan H, Xu LH, Wang Y, He XH. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem Toxicol. 2013;60:424–30. https://doi.org/10.1016/j.fct.2013.08.007.

    Article  CAS  PubMed  Google Scholar 

  79. Greenshields AL, Doucette CD, Sutton KM, Madera L, Annan H, Yaffe PB, et al. Piperine inhibits the growth and motility of triplenegative breast cancer cells. Cancer Lett. 2015;357(1):129–40. https://doi.org/10.1016/j.canlet.2014.11.017.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Effat.

Ethics declarations

Conflict of interest

Authors declare no financial or non-financial competing interest.

Ethics Approval and Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Effat, H., El Houseini, M.E. & Abohashem, R.S. The Combined Impact of Curcumin: Piperine and Sorafenib on microRNAs and Different Pathways in Breast Cancer Cells. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01212-0

Keywords

Navigation