Skip to main content

Advertisement

Log in

Multivariate Statistical Evaluation of 20 Metals/Metalloid Levels in the Serum of Patients with Prostate Gland Diseases

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The prostate gland diseases are associated with benign prostatic hyperplasia (BPH) and prostate cancer (PC) and exposure to toxic trace elements may promote the prostatic disorders in men. The present study is intended to analyze the concentrations of twenty elements (Al, Sb, Ca, Se, Cd, Fe, Hg, As, Zn, Mn, Na, Li, Cu, Co, Mg, Sr, Ni, K, Cr and Pb) in the serum of BPH (n = 188) and PC (n = 217) patients and in comparison with controls (n = 233). Nitric acid-perchloric acid mixture was used for serum digestion followed by determination of the metals/metalloid by atomic absorption spectrophotometry. This study elucidates the imbalances of the elements with BPH/PC patients and healthy subjects. For multiple comparisons, Bonferroni test was applied and principal component analysis was performed for measuring the multiple metals/metalloid exposure. Mean concentrations of Al, Cr, Pb, Cd, Na, Ni and K were found higher significantly (p < 0.05) in the serum of BPH patients compared with healthy controls, while average levels of Sb, Al, Cd, As, Mn, Sr, K and Pb were significantly (p < 0.05) elevated in PC patients than controls. The correlation patterns revealed significantly different mutual associations among the metals/metalloid in patients as compared to controls. Multivariate statistical methods showed substantially divergent grouping of the metals/metalloid for both groups of patients and healthy controls. Significant variations in the elements levels were also detected in various PC types (small cell prostate, transitional cell, squamous cell carcinomas and adenocarcinoma) and PC stages. Significant differences in the metals/metalloid levels were also noted with abode, dietary and smoking habits of donor groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Wang L, Lu B, He M, Wang Y, Wang Z, Du L. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front Public Health. 2022;10:811044. https://doi.org/10.3389/fpubh.2022.811044.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  4. Chang WH, Lee CC, Yen YH, Chen HL. Oxidative damage in patients with benign prostatic hyperplasia and prostate cancer co-exposed to phthalates and to trace elements. Environ Int. 2018;121(2):1179–84. https://doi.org/10.1016/j.envint.2018.10.034.

    Article  CAS  PubMed  Google Scholar 

  5. Zaichick V, Zaichick S. Significance of trace element quantities in the prostatic secretion of patients with benign prostatic hyperplasia and prostate cancer. J Cancer Metastasis Treat. 2019;5:48. https://doi.org/10.20517/2394-4722.2019.07.

    Article  CAS  Google Scholar 

  6. Bostwick DG. Grading prostate cancer. Am J Clin Pathol. 1994;102:S38–56.

    CAS  PubMed  Google Scholar 

  7. Pizent A, Andelkovic M, Lovakovic BT, Semren TZ, Djordjevic AB, Gamulin M. Environmental exposure to metals, parameters of oxidative stress in blood and prostate cancer: results from two cohorts. Antioxidants. 2022;11(10):2044. https://doi.org/10.3390/antiox11102044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chandrasekaran B, Dahiya NR, Tyagi A, Kolluru V, Saran U, Baby BV. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23. https://doi.org/10.1038/s41389-020-0202-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10(2):63–8. https://doi.org/10.14740/wjon1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vella V, Malaguarnera R, Lappano R, Maggiolini M, Belfiore A. Recent views of heavy metals as possible risk factors and potential preventive and therapeutic agents in prostate cancer. Mol Cell Endocrinol. 2017;457:57–72. https://doi.org/10.1016/j.mce.2016.10.020.

    Article  CAS  PubMed  Google Scholar 

  11. Lim KB. Epidemiology of clinical benign prostatic hyperplasia. Asian J Urol. 2017;4(3):148–51. https://doi.org/10.1016/j.ajur.2017.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wu H, Wang M, Raman JD, McDonald AC. Association between urinary arsenic, blood cadmium, blood lead, and blood mercury levels and serum prostate-specific antigen in a population-based cohort of men in the United States. PLoS One. 2021;16(4):e0250744. https://doi.org/10.1371/journal.pone.0250744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wijngaarden EV, Singer EA, Palapattu GS. Prostate-specific antigen levels in relation to cadmium exposure and zinc intake: results from the 2001–2002 national health and nutrition examination survey. Prostate. 2008;68:122–8. https://doi.org/10.1002/pros.20668.

    Article  CAS  PubMed  Google Scholar 

  14. Qayyum MA, Zahid F, Yaseen M, Mahmood MHR, Irfan A, Zafar MN. Statistical assessment of toxic and essential metals in the serum of female patients with lung carcinoma from Pakistan. Biol Trace Elem Res. 2020;197:367–83. https://doi.org/10.1007/s12011-019-01998-8.

    Article  CAS  PubMed  Google Scholar 

  15. Mahmood MHR, Qayyum MA, Yaseen F, Farooq T, Farooq Z, Yaseen M, et al. Multivariate investigation of toxic and essential metals in the serum from various types and stages of colorectal cancer patients. Biol Trace Elem Res. 2022;200(1):31–48. https://doi.org/10.1007/s12011-021-02632-2.

    Article  CAS  PubMed  Google Scholar 

  16. Karunasinghe N, Minas TZ, Bao BY, Lee A, Wang A, Zhu S, et al. Assessment of factors associated with PSA level in prostate cancer cases and controls from three geographical regions. Sci Rep. 2022;12:55. https://doi.org/10.1038/s41598-021-04116-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu CC, Pu YS, Wu HC, Yang CY, Chen YC. Reversed association between levels of prostate specific antigen and levels of blood cadmium and urinary cadmium. Chemosphere. 2011;83:1188–91. https://doi.org/10.1016/j.chemosphere.2010.12.085.

    Article  CAS  PubMed  Google Scholar 

  18. StatSoft STATISTICA for Windows. Computer Program Manual, StatSoft, Tusla; 1999.

  19. Jolliffe I. Principal component analysis. Berlin: Springer; 2011.

    Google Scholar 

  20. Jolliffe I. Principal component analysis. 2nd ed. New York: Springer; 2002.

    Google Scholar 

  21. Everitt BS, Landau S, Leese M, Stahl D. Cluster analysis. 5th ed. Chichester: John Wiley & Sons; 2011.

    Book  Google Scholar 

  22. Ren Y, Zhang Z, Ren Y, Li W, Wang M, Xu G. Diagnosis of lung cancer based on metal contents in serum and hair using multivariate statistical methods. Talanta. 1997;44(10):1823–31. https://doi.org/10.1016/S0039-9140(97)00062-3.

    Article  CAS  PubMed  Google Scholar 

  23. Saleh SAK, Adly HM, Abdelkhaliq AA, Nassir AM. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patient. Curr Urol. 2020;14:44–9. https://doi.org/10.1159/000499261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Platz EA, Helzlsouer KJ. Selenium, zinc, and prostate cancer. Epidemiol Rev. 2001;23:93–101. https://doi.org/10.1093/oxfordjournals.epirev.a000801.

    Article  CAS  PubMed  Google Scholar 

  25. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity. Int J Environ Res Public Health. 2020;17:3782. https://doi.org/10.3390/ijerph17113782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hartwig A. Cadmium and cancer. In: Sigel A, Sigel H, Sigel RKO, editors. Cadmium: from toxicity to essentiality. Metal ions in life sciences, vol. 11. Dordrecht: Springer; 2013. p. 491–507. https://doi.org/10.1007/978-94-007-5179-8_15.

    Chapter  Google Scholar 

  27. Zimta AA, Schitcu V, Gurzau E, Stavaru C, Manda G, Szedlacsek S, Berindan-Neagoe I. Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development. Environ Res. 2019;178:108700. https://doi.org/10.1016/j.envres.2019.108700.

    Article  CAS  PubMed  Google Scholar 

  28. Nordberg GF, Nogawa K, Nordberg M. In: Nordberg GF, Fowler GF, Nordberg M, editors. Handbook on the toxicology of metals, cadmium. 4th ed. Amsterdam: Elsevier; 2015. pp. 667–716.

  29. Zhang L, Zhu Y, Hao R, Shao M, Luo Y. Cadmium levels in tissue and plasma as a risk factor for prostate carcinoma: a meta-analysis. Biol Trace Elem Res. 2016;172:86–92. https://doi.org/10.1007/s12011-015-0576-0.

    Article  CAS  PubMed  Google Scholar 

  30. Ju-Kun S, Yuan DB, Rao HF, Chen TF, Luan BS, Xu XM, et al. Association between cd exposure and risk of prostate cancer: a prisma-compliant systematic review and meta-analysis. Medicine. 2016;95:e2708. https://doi.org/10.1097/MD.0000000000002708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL. Arsenic exposure and the induction of human cancers. J Toxicol. 2011;431287:13. https://doi.org/10.1155/2011/431287.

    Article  CAS  Google Scholar 

  32. Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L. An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect. 2011;119(1):11–9. https://doi.org/10.1289/ehp.1002114.

    Article  CAS  PubMed  Google Scholar 

  33. Wakwe C, Odum EP, Amadi C. The impact of plasma zinc status on the severity of prostate cancer disease victor C. Investig Clin Urol. 2019;60:162–8. https://doi.org/10.4111/icu.2019.60.3.162.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liang JY, Liu YY, Zou J, Franklin RB, Costello LC, Feng P. Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate. 1999;40:200–7. https://doi.org/10.1002/(SICI)1097-0045(19990801)40:33.0.CO;2-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Costello LC, Franklin RB. Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate. 1998;35:285–96. https://doi.org/10.1002/(sici)1097-0045(19980601)35:4%3c285:aid-pros8%3e3.0.co;2-f.

    Article  CAS  PubMed  Google Scholar 

  36. Karunasinghe N. Zinc in prostate health and disease: a mini review. Biomedicines. 2022;10:3206. https://doi.org/10.3390/biomedicines10123206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao J, Wu Q, Hu X, Dong X, Wang L, Liu Q, et al. Comparative study of serum zinc concentrations in benign and malignant prostate disease: a systematic review and meta-analysis. Sci Rep. 2016;6:25778. https://doi.org/10.1038/srep25778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Christudoss P, Selvakumar R, Fleming JJ, Gopalakrishnan G. Zinc status of patients with benign prostatic hyperplasia and prostate carcinoma. Indian J Urol. 2011;27(1):14–8. https://doi.org/10.4103/0970-1591.78405.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Costelloa LC, Renty B, Franklin A. Comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch Biochem Biophys. 2016;611:100–12. https://doi.org/10.1016/j.abb.2016.04.014.

    Article  CAS  Google Scholar 

  40. To PK, Do MH, Cho JH, Jung C. Growth modulatory role of zinc in prostate cancer and application to cancer therapeutics. Int J Mol Sci. 2020;21:2991. https://doi.org/10.3390/ijms21082991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhitkovich A. Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol. 2011;24:1617–29. https://doi.org/10.1021/tx200251t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen QY, Murphy A, Sun H, Costa M. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicol Appl Pharmacol. 2019;377:114636. https://doi.org/10.1016/j.taap.2019.114636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang XH, Zhang X, Wang XC, Jin LF, Yang ZP, Jiang CX, et al. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers. BMC Public Health. 2011;11:224. https://doi.org/10.1186/1471-2458-11-224.

    Article  PubMed  PubMed Central  Google Scholar 

  44. El-Atta HMA, El-Bakary AA, Attia AM, Lotfy A, Khater SS, Elsamanoudy AZ, et al. DNA fragmentation, caspase 3 and prostate-specific antigen genes expression induced by arsenic, cadmium, and chromium on nontumorigenic human prostate cells. Biol Trace Elem Res. 2014;162:95–105. https://doi.org/10.1007/s12011-014-0100-y.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang C, Cai K, Feng Q, Xu Y, Zhang Z. Chromium(VI) promotes cell migration through targeting epithelial-mesenchymal transition in prostate cancer. Toxicol Lett. 2019;300:10–7. https://doi.org/10.1016/j.toxlet.2018.10.012.

    Article  CAS  PubMed  Google Scholar 

  46. Exley C. The toxicity of aluminum in humans. Morphologie. 2016;100(329):51–5. https://doi.org/10.1016/j.morpho.2015.12.003.

    Article  CAS  PubMed  Google Scholar 

  47. Igbokwe IO, Gwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol. 2019;12(2):45–70. https://doi.org/10.2478/intox-2019-0007.

    Article  CAS  PubMed  Google Scholar 

  48. Brylinski L, Kostelecka K, Wolinski F, Duda P, Gora J, Granat M, et al. Aluminum in the human brain: routes of penetration, toxicity, and resulting complications. Int J Mol Sci. 2023;24:7228. https://doi.org/10.3390/ijms24087228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lima DS, Gomes LS, Figueredo ES, de Godoi MM, Silva EM, Neri HFS, et al. Aluminum exposure promotes histopathological and pro-oxidant damage to the prostate and gonads of male and female adult gerbils. Exp Mol Pathol. 2020;116:104486. https://doi.org/10.1016/j.yexmp.2020.104486.

    Article  CAS  Google Scholar 

  50. Lim JT, Tan YQ, Valeri L, Lee J, Geok PP, Chia SE, et al. Association between serum heavy metals and prostate cancer risk—a multiple metal analysis. Environ Int. 2019;132:105109. https://doi.org/10.1016/j.envint.2019.105109.

    Article  CAS  PubMed  Google Scholar 

  51. Ebrahimi M, Khalili N, Razi S, Keshavarz-Fathi M, Khalili N, Rezaei N. Effects of lead and cadmium on the immune system and cancer progression. J Environ Health Sci Eng. 2020;18(1):335–43. https://doi.org/10.1007/s40201-020-00455-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univ Sci. 2022;34(3):101865. https://doi.org/10.1016/j.jksus.2022.101865.

    Article  Google Scholar 

  53. Fritschi L, Glass DC, Tabrizi JS, Leavy JE, Ambrosini GL. Occupational risk factors for prostate cancer and benign prostatic hyperplasia: a case–control study in Western Australia. Occup Environ Med. 2007;64(1):60–5. https://doi.org/10.1136/oem.2006.027706.

    Article  CAS  PubMed  Google Scholar 

  54. Guzel S, Kiziler L, Aydemir B, Alici B, Ataus S, Aksu A, et al. Association of Pb, Cd, and Se concentrations and oxidative damage-related markers in different grades of prostate carcinoma. Biol Trace Elem Res. 2012;145(1):23–32. https://doi.org/10.1007/s12011-011-9162-2.

    Article  CAS  PubMed  Google Scholar 

  55. Kaba M, Pirincci N, Yuksel MB, Gecit I, Gunes M, Ozveren H, et al. Serum levels of trace elements in patients with prostate cancer. Asian Pac J Cancer Prev. 2014;15(6):2625–9. https://doi.org/10.7314/apjcp.2014.15.6.2625.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate all the staff of PINUM Faisalabad and Allied Hospital Faisalabad Pakistan for their contributions. Technical and financial help by University of Education, Lahore, Pakistan to execute this project is also acknowledged.

Funding

No funding is provided in this project.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions of all authors. All authors have agreed and approved the final version of the manuscript. MHRM, MAQ, and TF studied conception and designed: AI and SI were involved in providing samples with clinical guidance. NH and MAQ were involved in the analysis of the data. Critical revision of manuscript was completed by MHRM and TF.

Corresponding author

Correspondence to Muhammad Abdul Qayyum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Ethical Review Committee, PINUM Faisalabad & Allied Hospital, Faisalabad Medical University, Faisalabad-Pakistan Ref. No. UEFC/2022/R437 and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all patients and controls for being included in the present research work. All the participants agreed voluntary in the present study.

Consent to Publish

All authors have read and approved the final submitted manuscript. We certify that this manuscript is original and not previously published in any form including on preprint servers, nor is it being considered elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qayyum, M.A., Mahmood, M.H.R., Farooq, T. et al. Multivariate Statistical Evaluation of 20 Metals/Metalloid Levels in the Serum of Patients with Prostate Gland Diseases. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01209-9

Keywords

Navigation