Skip to main content
Log in

Monosodium Glutamate Even at Low Dose May Affect Oxidative Stress, Inflammation and Neurodegeneration in Rats

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Monosodium glutamate (MSG) is a widely used flavour enhancer. A daily intake of MSG at high dosage (2000–4000 mg/kg body weight) is reported to be toxic to humans and experimental animals. The present study aims to investigate the toxic effect of oral administration of MSG at low concentrations (30 and 100 mg/kg body weight) by evaluating biochemical parameters of oxidative stress and inflammation in blood; expression of neuroinflammatory gene and histopathological changes in brain on male Wistar rats. The administration of MSG significantly increases serum level of fasting glucose, insulin, triglycerides, total cholesterol, low-density lipoprotein and decrease level of high-density lipoprotein. Significant low level of FRAP, GSH, SOD, CAT and higher level of MDA, PCO, AOPP, PMRS, NO, CRP, IL-6, TNF-α confirms substantial oxidative stress followed by inflammation after 100 mg MSG treatment. RT-PCR figure shows significant expression of neuroinflammatory gene IL-6 and TNF-α and histopathological examination revealed severe neurodegeneration in hippocampus (CA1 and CA3) and cerebral cortex region of brain at 100 mg MSG treatment. Our result provides evidence that MSG administration at 30 mg does not impose toxicity, however at 100 mg/kg body weight, which is considered a low dose, there is significant toxic effects and may be detrimental to health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data has been shared at https://doi.org/10.17632/mg5bztdgw8.1.

Abbreviations

MSG:

Monosodium glutamate

BBB:

Blood brain barrier

CA:

Cornu ammonis

NMDAR:

N-methyl D-aspartate receptor

References

  1. Walker R, Lupien JR. The safety evaluation of monosodium glutamate. J Nutrit. 2000. https://doi.org/10.1093/jn/130.4.1049S.

    Article  PubMed  Google Scholar 

  2. Onaolapo AY, Onaolapo OJ. Dietary glutamate and the brain: In the footprints of a Jekyll and Hyde molecule. Neurotoxicology. 2020. https://doi.org/10.1016/j.neuro.2020.07.001.

    Article  PubMed  Google Scholar 

  3. Rosa SG, Chagas PM, Pesarico AP, Nogueira CW. Monosodium glutamate induced nociception and oxidative stress dependent on time of administration, age of rats and susceptibility of spinal cord and brain regions. Toxicol Appl Pharmacol. 2018;351:64–73.

    Article  CAS  PubMed  Google Scholar 

  4. Banerjee A, Mukherjee S, Maji BK. Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: an overview. Toxicology Reports: Elsevier; 2021.

    Book  Google Scholar 

  5. Hussein UK, Hassan NE-HY, Elhalwagy ME, Zaki AR, Abubakr HO, Nagulapalli Venkata KC, et al. Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules. 2017;22:1928.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hassan HA, El-Kholy WM, El-Sawi MR, Galal NA, Ramadan MF. Myrtle (Myrtus communis) leaf extract suppresses hepatotoxicity induced by monosodium glutamate and acrylamide through obstructing apoptosis, DNA fragmentation, and cell cycle arrest. Environ Sci Pollut Res. 2020;27:23188–98.

    Article  CAS  Google Scholar 

  7. Hazzaa SM, El-Roghy ES, Abd Eldaim MA, Elgarawany GE. Monosodium glutamate induces cardiac toxicity via oxidative stress, fibrosis, and P53 proapoptotic protein expression in rats. Environ Sci Pollut Res. 2020;27:20014–24.

    Article  CAS  Google Scholar 

  8. Kayode OT, Rotimi DE, Olaolu TD, Adeyemi OS. Ketogenic diet improves and restores redox status and biochemical indices in monosodium glutamate-induced rat testicular toxicity. Biomed Pharmacother. 2020;127:110227.

    Article  CAS  PubMed  Google Scholar 

  9. Elbassuoni EA, Ragy MM, Ahmed SM. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomed Pharmacoth. 2018;108:799–808.

    Article  CAS  Google Scholar 

  10. Masre SF, Razali NA, Naimah NNN, Taib IS. Biochemical and Histological Effects of Low Dose of Monosodium Glutamate on the Liver of Adult Male Sprague-Dawley Rats. Jurnal Sains Kesihatan Malaysia (Malaysian J Health Sci). 2019;17(S1):33–8.

    Article  Google Scholar 

  11. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Meth Enzymol. 1990;186:407–21.

    Article  CAS  Google Scholar 

  12. Rizvi SI, Jha R, Maurya PK. Erythrocyte plasma membrane redox system in human aging. Rejuvenation research. Mary Ann Liebert, Inc. 2 Madison Avenue Larchmont, NY 10538 USA; 2006;9:470–4.

  13. Beutler E, Gelbart T, Pegelow C. Erythrocyte glutathione synthetase deficiency leads not only to glutathione but also to glutathione-S-transferase deficiency. J Clin Invest. 1986;77:38–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70–6.

    Article  CAS  PubMed  Google Scholar 

  15. Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–13.

    Article  CAS  PubMed  Google Scholar 

  16. Singh AK, Singh S, Garg G, Rizvi SI. Rapamycin alleviates oxidative stress-induced damage in rat erythrocytes. Biochemistry and cell biology. NRC Research Press; 2016;94:471–9.

  17. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev. 1998;30:225–43.

    Article  CAS  PubMed  Google Scholar 

  18. Kono Y. Generation of superoxide radicals during auto-oxidation of hydroxyl-amine hydrochloride an assay for SOD. Arch Biochem Biophys. 1978;186:189–95.

    Article  CAS  PubMed  Google Scholar 

  19. Luck H, Bergmeyer HU, editors. Catalase. New York: Methods of Enzymatic Analysis. Academic Press; 1971.

    Google Scholar 

  20. Akbar MF. Increased nitric oxide (NO) production by antigen-presenting dendritic cells is responsible for low allogeneic mixed leucocyte reaction (MLR) in primary biliary cirrhosis (PBC). Clin Exper Immunol. 1998;114:94–101.

    Google Scholar 

  21. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Trans. 2014;121:799–817.

    Article  CAS  Google Scholar 

  22. Liu C, Yuan Y, Zhou J, Hu R, Ji L, Jiang G. Piperine ameliorates insulin resistance via inhibiting metabolic inflammation in monosodium glutamate-treated obese mice. BMC End Disord BioMed Central. 2020;20:1–15.

    Google Scholar 

  23. Abdel-Reheim ES, Abdel-Hafeez HA, Mahmoud BM, Abd-Allah EN. Effect of food additives (monosodium glutamate and sodium nitrite) on some biochemical parameters in albino rats. Int J Bioass. 2014;3:3260–73.

    Google Scholar 

  24. Ateya RH, Taha NM, Mandour AEA, Lebda MA, El-Morshedy AM. Effect of monosodium glutamate and sodium nitrite on some biochemical parameters in Japanese quails. Alexandria J Veter Sci. 2016;48(1):107.

    Article  Google Scholar 

  25. Uti DE, Atangwho IJ, Eyong EU, Umoru GU, Egbung GE, Nna VU, et al. African walnuts attenuate ectopic fat accumulation and associated peroxidation and oxidative stress in monosodium glutamate-obese Wistar rats. Biomed Pharmacoth. 2020;124:109879.

    Article  CAS  Google Scholar 

  26. Owoeye O, Salami OA. Monosodium glutamate toxicity: Sida acuta leaf extract ameliorated brain histological alterations, biochemical and haematological changes in wistar rats. Afr J Biomed Res. 2017;20:173–82.

    Google Scholar 

  27. Sharma A. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review. J Biomed Sci. 2015;22:1–6.

    Article  CAS  Google Scholar 

  28. Paul MS, Abhilash M, Varghese MV, Alex M, Harikumaran Nair R. Protective effects of α-tocopherol against oxidative stress related to nephrotoxicity by monosodium glutamate in rats. Toxicol Mech Meth. 2012;22:625–30.

    Article  CAS  Google Scholar 

  29. de Grey AD. The plasma membrane redox system: a candidate source of aging-related oxidative stress. Age. 2005;27:129–38.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tripathi SS, Singh AK, Akhtar F, Chaudhary A, Rizvi SI. Metformin protects red blood cells against rotenone induced oxidative stress and cytotoxicity. Arch Physiol Biochem. 2021;127:102–11.

    Article  CAS  PubMed  Google Scholar 

  31. Cristani M, Speciale A, Saija A, Gangemi S, Lucia Minciullo P, Cimino F. Circulating advanced oxidation protein products as oxidative stress biomarkers and progression mediators in pathological conditions related to inflammation and immune dysregulation. Curr Med Chem. 2016;23:3862–82.

    Article  CAS  PubMed  Google Scholar 

  32. Pandey KB, Mehdi MM, Maurya PK, Rizvi SI. Plasma protein oxidation and its correlation with antioxidant potential during human aging. Disease Mark. 2010;29:31–6.

    Article  CAS  Google Scholar 

  33. Mahieu S, Klug M, Millen N, Fabro A, Benmelej A, del Carmen CM. Monosodium glutamate intake affect the function of the kidney through NMDA receptor. Life Sci. 2016;149:114–9.

    Article  CAS  PubMed  Google Scholar 

  34. Xue Y-D, Wong P-H, Leong S-K. Nitric oxide synthase-, N-methyl-D-aspartate receptor-, glutamate-and aspartate-immunoreactive neurons in the mouse arcuate nucleus: effects of neonatal treatment with monosodium glutamate. Acta Neuropathol. 1997;94:572–82.

    Article  CAS  PubMed  Google Scholar 

  35. El Hady A, Mousa M, Mansour H, Eid F, Mashaal A. Anti-inflammatory activity of ginger modulates macrophage activation against the inflammatory pathway of monosodium glutamate. J Food Biochem. 2021;45:e13819.

    Google Scholar 

  36. Miller ES, Apple CG, Kannan KB, Funk ZM, Plazas JM, Efron PA, et al. Chronic stress induces persistent low-grade inflammation. Am J Surg. 2019;218:677–83.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chaparro-Huerta V, Rivera-Cervantes MC, Flores-Soto ME, Gomez-Pinedo U, Beas-Zarate C. Proinflammatory cytokines and apoptosis following glutamate-induced excitotoxicity mediated by p38 MAPK in the hippocampus of neonatal rats. J Neuroimmunol. 2005;165:53–62.

    Article  CAS  PubMed  Google Scholar 

  38. Banerjee A, Mukherjee S, Maji BK. Monosodium glutamate causes hepato-cardiac derangement in male rats. Hum Exp Toxicol. 2021;40:S359–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Department of Biotechnology, Government of India, has provided financial support under the ‘Research Resources, Service Facilities, and Platforms’ programme. The Department of Biochemistry is funded by the DST, FIST Grant, New Delhi and the SAP DRS I from UGC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Ibrahim Rizvi.

Ethics declarations

Conflict of interest

The authors of this manuscript have no conflict to interest.

Human and Animal Rights

The experimental procedures involving animals were done following the guidelines of the Institutional Animal Ethical Committee of University of Allahabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesherwani, R., Bhoumik, S., Kumar, R. et al. Monosodium Glutamate Even at Low Dose May Affect Oxidative Stress, Inflammation and Neurodegeneration in Rats. Ind J Clin Biochem 39, 101–109 (2024). https://doi.org/10.1007/s12291-022-01077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-022-01077-1

Keywords

Navigation