Skip to main content

Advertisement

Log in

Exploration of Circulating Tumour Cell (CTC) Biology: A Paradigm Shift in Liquid Biopsy

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Circulating tumour cells (CTCs), are disseminated tumour cells found in the blood in solid tumour malignancies. Identification of CTCs act as emerging tools in the field of the Liquid Biopsy. Majority of the studies focused on detection and enumeration of CTCs due to technological challenges those results from the rarity of CTCs in the blood. Enumeration of CTCs has already proven their value as prognostic as well as predictive biomarkers for disease prognosis. However, recent advances in technology permitted to study the molecular and functional features of CTCs and these features have the potential to change the diagnostic, prognostic and predictive landscape in oncology. In this review, we summarize the paradigm shift in the field of liquid biopsy-based cancer diagnostics using CTC isolation and detection. We have discussed recent advances in the technologies for molecular characterization of CTCs which have aided a shift from CTC enumeration to an in-depth analysis of the CTC genome, transcriptomes, proteins, epigenomes along with various functional features. Finally, as a prognosticating strategy, the potentials of CTCs as a tool of liquid biopsy to predict micrometastasis, monitor prognosis and how to use them as an additional tool for cancer staging has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pantel K, Alix-Panabieres C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med. 2010;16:398–406.

    PubMed  Google Scholar 

  2. Batth IS, Mitra A, Manier S, et al. Circulating tumor markers: harmonizing the yin and yang of CTCs and ctDNA for precision medicine. Ann Oncol. 2017;28(3):468–77.

    CAS  PubMed  Google Scholar 

  3. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–48.

    CAS  PubMed  Google Scholar 

  4. Wan JCM, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.

    CAS  PubMed  Google Scholar 

  5. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61:112–23.

    CAS  PubMed  Google Scholar 

  6. Alix-Panabieres C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14:623–31.

    CAS  PubMed  Google Scholar 

  7. Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor dna as liquid biopsy. Cancer Discov. 2016;6:479–91.

    CAS  PubMed  Google Scholar 

  8. Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell. 2017;31:172–9.

    CAS  PubMed  Google Scholar 

  9. Amorim MG, et al. A total transcriptome profiling method for plasma-derived extracellular vesicles: applications for liquid biopsies. Sci Rep. 2017;7:14395.

    PubMed  PubMed Central  Google Scholar 

  10. Chan KC, et al. Noninvasive detection of cancer associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci USA. 2013;110:18761–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim Y, et al. Targeted proteomics identifies liquid biopsy signatures for extracapsular prostate cancer. Nat Commun. 2016;7:11906.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mayers JR, et al. Elevation of circulating branched chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med. 2014;20:1193–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumour cells: a multifunctional biomarker. Clin Cancer Res. 2014;20:2553–68.

    CAS  PubMed  Google Scholar 

  14. Alix-Panabieres C, Mader S, Pantel K. Epithelial mesenchymal plasticity in circulating tumor cells. J Mol Med. 2017;95:133–42.

    CAS  PubMed  Google Scholar 

  15. Ohnaga T, Takei Y, Nagata T, Shimada Y. Highly efficient capture of cancer cells expressing EGFR by microfluidic methods based on antigen-antibody association. Sci Rep. 2018;8:12005.

    PubMed  PubMed Central  Google Scholar 

  16. Santana SM, Liu H, Bander NH, Gleghorn JP, Kirby BJ. Immunocapture of prostate cancer cells by use of anti-PSMA antibodies in microdevices. Biomed Microdevices. 2012;14:401–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Coumans FA, van Dalum G, Beck M, Terstappen LW. Filtration parameters influencing circulating tumor cell enrichment from whole blood. PLoS ONE. 2013;8:e61774.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun N, Li X, Wang Z, Li Y, Pei R. High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method. Biosens Bioelectron. 2018;102:157–63.

    CAS  PubMed  Google Scholar 

  19. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10:6897–904.

    PubMed  Google Scholar 

  20. Bhagwat N, et al. An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Sci Rep. 2018;8:5035.

    PubMed  PubMed Central  Google Scholar 

  21. Lopresti A, Malergue F, Bertucci F, Liberatoscioli ML, Garnier S, DaCosta Q, et al. Sensitive and easy screening for circulating tumor cells by flow cytometry. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.128180.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Soler A, Cayrefourcq L, Mazel M, Alix-Panabieres C. EpCAM-independent enrichment and detection of viable circulating tumor cells using the EPISPOT assay. Methods Mol Biol. 2017;1634:263–76.

    CAS  PubMed  Google Scholar 

  23. Eyer K, et al. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat Biotechnol. 2017;35:977–82.

    CAS  PubMed  Google Scholar 

  24. Babayan A, et al. Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells. Oncotarget. 2016;8:56066–80.

    PubMed  PubMed Central  Google Scholar 

  25. Maheswaran S, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359:366–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang Y, Palma JF, Agus DB, Wang Y, Gross ME. Detection of androgen receptor mutations in circulating tumor cells in castration resistant prostate cancer. Clin Chem. 2010;56:1492–5.

    PubMed  Google Scholar 

  27. Schneck H, et al. Analysing the mutational status of PIK3CA in circulating tumor cells from metastatic breast cancer patients. Mol Oncol. 2013;7:976–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Meric-Bernstam F, et al. Advances in HER2-targeted therapy: novel agents and opportunities beyond breast and gastric cancer. Clin Cancer Res. 2019. https://doi.org/10.1158/1078-0432.CCR-18-2275.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, CruzGordillo P, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32:479–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z, et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA. 2013;110:21083–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Carter L, Rothwell D, Mesquita B, et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat Med. 2017;23:114–9. https://doi.org/10.1038/nm.4239.

    Article  CAS  PubMed  Google Scholar 

  32. Heitzer E, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 2013;73(10):2965–75.

    CAS  PubMed  Google Scholar 

  33. Yu B, Li Y, Yuan H, Zhang B, Jiang X, Yu M, Zhu H, You Q, Wang L. Whole Genome Sequencing in single CTC improves clinical outcome in Her-2 negative breast cancer patients (2020). https://doi.org/10.21203/rs.3.rs-15473/v1.

  34. Gorges TM, et al. Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin Chem. 2016;62:1504–15.

    CAS  PubMed  Google Scholar 

  35. Jordan NV, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537:102–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Antonarakis ES, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38.

    PubMed  PubMed Central  Google Scholar 

  37. Steinestel J, et al. Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget. 2015. https://doi.org/10.18632/oncotarget.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Antonarakis ES, et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 2015;1:582–91.

    PubMed  PubMed Central  Google Scholar 

  39. Nakazawa M, et al. Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann Oncol. 2015;26:1859–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Onstenk W, et al. Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur Urol. 2015;68:939–45.

    CAS  PubMed  Google Scholar 

  41. Scher HI, et al. Nuclear-specific AR-V7 protein localization is necessary to guide treatment selection in metastatic castration-resistant prostate cancer. Eur Urol. 2017;71:874–82.

    CAS  PubMed  Google Scholar 

  42. Scher HI, et al. Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol. 2018;4:1179–86.

    PubMed  PubMed Central  Google Scholar 

  43. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 2014;8:1905–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyamoto DT, et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science. 2015;349:1351–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stewart CA, Gay CM, Xi Y, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Cancer. 2020. https://doi.org/10.1038/s43018-019-0020-z}.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, et al. Single-cell detection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal Chem. 2015;87:9761–8.

    CAS  PubMed  Google Scholar 

  48. Yao X, et al. Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integr Biol (Camb). 2014;6:388–98.

    CAS  Google Scholar 

  49. Sinkala E, et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun. 2017;8:14622.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gerdtsson E, Pore M, Thiele JA, Gerdtsson AS, Malihi PD, Nevarez R, et al. Multiplex protein detection on circulating tumor cells from liquid biopsies using imaging mass cytometry. Converg Sci Phys Oncol. 2018. https://doi.org/10.1088/2057-1739/aaa013.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Franzen B, et al. A fine-needle aspiration-based protein signature discriminates benign from malignant breast lesions. Mol Oncol. 2018;12:1415–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pixberg CF, Raba K, Müller F, Behrens B, Honisch E, Niederacher D, et al. Analysis of DNA methylation in single circulating tumor cells. Oncogene. 2017;36:3223–31.

    CAS  PubMed  Google Scholar 

  53. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 2019;176:98–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hodgkinson CL, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20:897–903.

    CAS  PubMed  Google Scholar 

  55. Baccelli I, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31:539–44.

    CAS  PubMed  Google Scholar 

  56. Alix-Panabieres C, et al. Molecular portrait of metastasis-competent circulating tumor cells in colon cancer reveals the crucial role of genes regulating energy metabolism and DNA repair. Clin Chem. 2017;63:700–13.

    CAS  PubMed  Google Scholar 

  57. Gorges TM, et al. Enumeration and molecular characterization of tumor cells in lung cancer patients using a novel in vivo device for capturing circulating tumor cells. Clin Cancer Res. 2016;22:2197–206.

    CAS  PubMed  Google Scholar 

  58. Soler A, et al. Autologous cell lines from circulating colon cancer cells captured from sequential liquid biopsies as model to study therapy-driven tumor changes. Sci Rep. 2018;8:15931.

    PubMed  PubMed Central  Google Scholar 

  59. Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017;355:1330–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mostert B, et al. Gene expression profiles in circulating tumor cells to predict prognosis in metastatic breast cancer patients. Ann. Oncol. 2014;26:510–6.

    PubMed  Google Scholar 

  61. Miyamoto DT, et al. Single-Cell Analysis of Circulating Tumor Cells as a Window into Tumor Heterogeneity. Cold Spring Harbor Symp Quant Biol. 2016;81:269–74. https://doi.org/10.1101/sqb.2016.81.031120.

    Article  PubMed  Google Scholar 

  62. Lambros MB, et al. Single-cell analyses of prostate cancer liquid biopsies acquired by apheresis. Clin Cancer Res. 2018;24:5635–44.

    CAS  PubMed  Google Scholar 

  63. Paoletti C, et al. Comprehensive mutation and copy number profiling in archived circulating breast cancer tumor cells documents heterogeneous resistance mechanisms. Cancer Res. 2018;78:1110–22.

    CAS  PubMed  Google Scholar 

  64. Pan H, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377:1836–46.

    PubMed  PubMed Central  Google Scholar 

  65. Sparano J, et al. Association of circulating tumor cells with late recurrence of estrogen receptor positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2018;4:1700–6.

    PubMed  PubMed Central  Google Scholar 

  66. van Dalum G, et al. Importance of circulating tumor cells in newly diagnosed colorectal cancer. Int J Oncol. 2015;46:1361–8.

    PubMed  Google Scholar 

  67. Lucci A, Hall CS, Patel SP, et al. Circulating tumor cells and early relapse in node-positive melanoma. Clin Cancer Res. 2020. https://doi.org/10.1158/1078-0432.ccr-19-2670.

    Article  PubMed  Google Scholar 

  68. Kantara C, O’Connell M, Luthra G, et al. Methods for detecting circulating cancer stem cells (CCSCs) as a novel approach for diagnosis of colon cancer relapse/metastasis. Lab Invest. 2015;95:100–12.

    CAS  PubMed  Google Scholar 

  69. Bissolati M, Sandri MT, Burtulo G, et al. Portal vein-circulating tumor cells predict liver metastases in patients with resectable pancreatic cancer. Tumor Biol. 2015;36:991–6.

    CAS  Google Scholar 

  70. Chemi F, Rothwell DG, McGranahan N, Gulati S, Abbosh C, Pearce SP, et al. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat Med. 2019;25:1534–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16:409–24.

    CAS  PubMed  Google Scholar 

  72. Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.

    CAS  PubMed  Google Scholar 

  73. Huang X, Gao P, Song Y, et al. Meta-analysis of the prognostic value of circulating tumor cells detected with the Cell Search System in colorectal cancer. BMC Cancer. 2015;15:202.

    PubMed  PubMed Central  Google Scholar 

  74. Scher HI, Jia X, de Bono JS, et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009;10:233–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Foy V, Fernandez-Gutierrez F, Faivre-Finn C, et al. The clinical utility of circulating tumour cells in patients with small cell lung cancer. Transl Lung Cancer Res. 2017;6:409–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lindsay CR, Blackhall FH, Carmel A, et al. EPAC-lung: pooled analysis of circulating tumour cells in advanced non-small cell lung cancer. Eur J Cancer. 2019;117:60–8.

    CAS  PubMed  Google Scholar 

  77. Bidard FC, Huguet F, Louvet C, et al. Circulating tumor cells in locally advanced pancreatic adenocarcinoma: the ancillary CirCe 07 study to the LAP 07 trial. Ann Oncol. 2013;24:2057–61.

    CAS  PubMed  Google Scholar 

  78. Zhang Y, Li J, Wang L, et al. Clinical significance of detecting circulating tumor cells in patients with esophageal squamous cell carcinoma by EpCAM-independent enrichment and immunostaining fluorescence in situ hybridization. Mol Med Rep. 2019;20:1551–60.

    PubMed  PubMed Central  Google Scholar 

  79. Riethdorf S, Hildebrandt L, Heinzerling L, et al. Detection and characterization of circulating tumor cells in patients with Merkel cell carcinoma. Clin Chem. 2019;65:462–72.

    CAS  PubMed  Google Scholar 

  80. Abrahamsson J, Aaltonen K, Engilbertsson H, et al. Circulating tumor cells in patients with advanced urothelial carcinoma of the bladder: association with tumor stage, lymph node metastases, FDG-PET findings, and survival. Urol Oncol. 2017;35(606):606.e9–16.

    CAS  Google Scholar 

  81. Balakrishnan A, Koppaka D, Anand A, et al. Circulating Tumor Cell cluster phenotype allows monitoring response to treatment and predicts survival. Sci Rep. 2019;9:7933.

    PubMed  PubMed Central  Google Scholar 

  82. Mazel M, Jacot W, Pantel K, et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol. 2015;9:1773–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Strati A, Koutsodontis G, Papaxoinis G, et al. Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Ann Oncol. 2017;28:1923–33.

    CAS  PubMed  Google Scholar 

  84. Guibert N, Delaunay M, Lusque A, et al. PD-L1 expression in circulating tumor cells of advanced nonsmall cell lung cancer patients treated with nivolumab. Lung Cancer. 2018;120:108–12.

    PubMed  Google Scholar 

  85. Saad N, Poudel A, Basnet A, Gajra A. Epidermal growth factor receptor T790M mutation-positive metastatic non-small-cell lung cancer: focus on osimertinib (AZD9291). Onco Targets Ther. 2017;10:1757–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Magbanua MJM, Rugo HS, Wolf DM, et al. Expanded genomic profiling of circulating tumor cells in metastatic breast cancer patients to assess biomarker status and biology over time (CALGB 40502 and CALGB 40503, Alliance). Clin Cancer Res. 2018;24:1486–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lakhani S, Ellis I, Schnitt S, et al. WHO classification of tumours of the breast. 4th ed. Lyon: IARC Press; 2012.

    Google Scholar 

  88. Amin MB, Edge S, Greene F, et al. AJCC cancer staging manual. 8th ed. New York: Springer Publishing; 2017.

    Google Scholar 

  89. Cristofanilli M, Pierga JY, Reuben J, et al. The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): international expert consensus paper. Crit Rev Oncol Hematol. 2019;134:39–45.

    PubMed  Google Scholar 

  90. Kolostova K, Matkowski R, Jędryka M, et al. The added value of circulating tumor cells examination in ovarian cancer staging. Am J Cancer Res. 2015;5(11):3363–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hou Y, Guo H, Cao C, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016;26:304–19. https://doi.org/10.1038/cr.2016.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bian S, et al. Single-cell multiomics sequencing and analyses of human colorectal cancer. Science. 2018;362:1060–3.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Council of Scientific and Industrial Research, New Delhi for providing fellowship to AC [09/141(0209)/2019-EMR-1] and RK [09/141(0210)/2019-EMR-1]. The figures are drawn using Inkscape software and templates available from Servier Medical Art provided by Les Laboratoires Servier under Creative Commons Attribution 3.0 Unported License has been used.

Funding

Council of Scientific and Industrial Research, India for fellowship to Anshika Chauhan and Rajandeep Kaur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Pal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Kaur, R., Ghoshal, S. et al. Exploration of Circulating Tumour Cell (CTC) Biology: A Paradigm Shift in Liquid Biopsy. Ind J Clin Biochem 36, 131–142 (2021). https://doi.org/10.1007/s12291-020-00923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-020-00923-4

Keywords

Navigation