Skip to main content

Advertisement

Log in

Study on Urinary Candidate Metabolome for the Early Detection of Breast Cancer

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

A metabolomic study for determination of certain urinary metabolomes, 1-methyladenosine (1-MA), 1-methylguanosine (1-MG), and 8-hydroxy-2′ deoxyguanosine (8-OHdG) in urine specimens of breast cancer patients. The accuracy of these metabolites and their combined score with cancer antigen 15-3 (CA15-3) was developed to improve the early detection of breast cancer. This study recruited 52 healthy individuals, 47 benign breast tumors, and 167 malignant breast tumor patients. Urine samples were handled to adjust the creatinine concentrations to 8 mg/dL (0.7 mmol/L) and analyzed using GC–MS to detect and quantify the selected urinary metabolomes in urine samples of all participants. The accuracy of individual urinary metabolomes and their combination with CA15-3 were evaluated using multivariate statistical analysis. The cutoff value of CA15-3 was 32.5 U/mL. Cutoff values of 1-MA, 1-MG, and 8-OHdG were 2.19, 2.1, and 7.3 µmol/mmol creatinine, respectively. The concentrations of 1-MA, 1-MG, and 8-OHdG were significantly higher in breast cancer patients, especially in the early-stage. The combination of three urinary metabolomes with CA15-3 improves the diagnostic sensitivity of breast cancer. For the combined score, the area under the curve (AUC) value of combined score ranged from 0.820 to 0.950, with high accuracy, ranged from 77.0 to 95.5%. The most significant AUC (0.973), sensitivity (90.1%), selectivity (94.0%) was recorded at comparing the healthy control with the early-stage of malignant breast cancer. In conclusion, the combination of three urinary metabolomes with serum CA15-3 improves the diagnostic sensitivity of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A. Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin. 2016;66(1):31–42.

    Article  Google Scholar 

  2. Struck-Lewicka W, Kordalewska M, Bujak R, Mpanga AY, Markuszewski M, Jacyna J, et al. Urine metabolic fingerprinting using LC–MS and GC–MS reveals metabolite changes in prostate cancer: a pilot study. J Pharm Biomed Anal. 2015;111:351–61.

    Article  CAS  Google Scholar 

  3. Günther UL. Metabolomics biomarkers for breast cancer. Pathobiology. 2015;82(3–4):153–65.

    Article  Google Scholar 

  4. Asiago VM, Alvarado LZ, Shanaiah N, Gowda GN, Owusu-Sarfo K, Ballas RA, et al. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. 2010;70(21):8309–18.

    Article  CAS  Google Scholar 

  5. Nagrath D, Caneba C, Karedath T. Bellance N (2011) Metabolomics for mitochondrial and cancer studies. Biochim Biophys Acta (BBA) Bioenerg. 1807;6:650–63.

    Google Scholar 

  6. Armitage EG, Barbas C. Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal. 2014;87:1–11.

    Article  CAS  Google Scholar 

  7. Seidel A, Brunner S, Seidel P, Fritz G, Herbarth O. Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. Br J Cancer. 2006;94(11):1726.

    Article  CAS  Google Scholar 

  8. Zhang S, Raftery D. Headspace SPME-GC–MS metabolomics analysis of urinary volatile organic compounds (VOCs). Mass Spectrom Metab Methods Protoc. 2014;1198(17):265–72.

    CAS  Google Scholar 

  9. Jobu K, Sun C, Yoshioka S, Yokota J, Onogawa M, Kawada C, et al. Metabolomics study on the biochemical profiles of odor elements in urine of human with bladder cancer. Biol Pharm Bull. 2012;35(4):639–42.

    Article  CAS  Google Scholar 

  10. Safaei A, Oskouie AA, Mohebbi SR, Rezaei-Tavirani M, Mahboubi M, Peyvandi M, et al. Metabolomic analysis of human cirrhosis, hepatocellular carcinoma, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis diseases. Gastroenterol Hepatol Bed Bench. 2016;9(3):158–65.

    PubMed  PubMed Central  Google Scholar 

  11. Omran MM, Farid K, Omar MA, Emran TM, El-Taweel FM, Tabll AA. A Combination of α-fetoprotein, midkine, thioredoxin and metabolite for predicting hepatocellular carcinoma. Ann Hepatol. 2019;19:179–85.

    Article  Google Scholar 

  12. Struck-Lewicka W, Kaliszan R, Markuszewski MJ. Analysis of urinary nucleosides as potential cancer markers determined using LC–MS technique. J Pharm Biomed Anal. 2014;101:50–7.

    Article  CAS  Google Scholar 

  13. Shulaev V. Metabolomics technology and bioinformatics. Brief Bioinform. 2006;7(2):128–39.

    Article  CAS  Google Scholar 

  14. Weckwerth W. Metabolomics: an integral technique in systems biology. Bioanalysis. 2010;2(4):829–36.

    Article  CAS  Google Scholar 

  15. Blau N, Duran M, Gibson KM. Laboratory guide to the methods in biochemical genetics. Berlin: Springer; 2008.

    Book  Google Scholar 

  16. Omran MM, Rashed RE, Darwish H, Belal AA, Mohamed FZ. Development of a gas chromatography–mass spectrometry method for breast cancer diagnosis based on nucleoside metabolomes 1-methyl adenosine, 1-methylguanosine, and 8-hydroxy-2’-deoxyguanosine. Biomed Chromatogr. 2019;34:e4713.

    PubMed  Google Scholar 

  17. Chen Y, Xu J, Zhang R, Abliz Z. Methods used to increase the comprehensive coverage of urinary and plasma metabolomes by MS. Bioanalysis. 2016;8(9):981–97.

    Article  CAS  Google Scholar 

  18. Raftery DM, Pan Z, Gu H. Breast cancer biomarkers and identification methods using NMR and gas chromatography-mass spectrometry. Google Patents; 2015.

  19. Oakman C, Tenori L, Biganzoli L, Santarpia L, Cappadona S, Luchinat C, et al. Uncovering the metabolomic fingerprint of breast cancer. Int J Biochem Cell Biol. 2011;43(7):1010–20.

    Article  CAS  Google Scholar 

  20. Mishra P, Ambs S. Metabolic signatures of human breast cancer. Mol Cell Oncol. 2015;2(3):e992217.

    Article  Google Scholar 

  21. Huang J-H, Fu L, Li B, Xie H-L, Zhang X, Chen Y, et al. Distinguishing the serum metabolite profiles differences in breast cancer by gas chromatography mass spectrometry and random forest method. RSC Adv. 2015;5(73):58952–8.

    Article  CAS  Google Scholar 

  22. Beretov J, Wasinger V, Graham P, Millar E, Kearsley J, Li Y. Proteomics for breast cancer urine biomarkers. Adv Clin Chem. 2014;63:123–67.

    Article  CAS  Google Scholar 

  23. Zhang A, Sun H, Wu X, Wang X. Urine metabolomics. Clin Chim Acta. 2012;414(5):65–9.

    Article  CAS  Google Scholar 

  24. Zhang A, Sun H, Yan G, Wang P, Wang X. Mass spectrometry-based metabolomics: applications to biomarker and metabolic pathway research. Biomed Chromatogr. 2016;30(1):7–12.

    Article  Google Scholar 

  25. Zhang A-H, Sun H, Qiu S, Wang X-J. Metabolomics in noninvasive breast cancer. Clin Chim Acta. 2013;424:3–7.

    Article  CAS  Google Scholar 

  26. Chen J, Hou W, Han B, Liu G, Gong J, Li Y, et al. Target-based metabolomics for the quantitative measurement of 37 pathway metabolites in rat brain and serum using hydrophilic interaction ultra-high-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem. 2016;408(10):2527–42.

    Article  CAS  Google Scholar 

  27. Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, et al. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 2019;9(4):76–83.

    Article  CAS  Google Scholar 

  28. Hedrich CM. Mechanistic aspects of epigenetic dysregulation in SLE. Clin Immunol. 2018;196:3–11.

    Article  CAS  Google Scholar 

  29. Zhang C, Jia G. Reversible RNA Modification N1-methyladenosine (m1A) in mRNA and tRNA. Genomics Proteomics Bioinform. 2018;16(3):155–61.

    Article  Google Scholar 

  30. Bayo J, Castaño M, Rivera F, Navarro F. Analysis of blood markers for early breast cancer diagnosis. Clin Transl Oncol. 2018;20(4):467–75.

    Article  CAS  Google Scholar 

  31. Cala M, Aldana J, Sánchez J, Guio J, Meesters RJ. Urinary metabolite and lipid alterations in Colombian Hispanic women with breast cancer: A pilot study. J Pharm Biomed Anal. 2018;152:234–41.

    Article  CAS  Google Scholar 

  32. Jasbi P, Wang D, Cheng SL, Fei Q, Cui JY, Liu L, et al. Breast cancer detection using targeted plasma metabolomics. J Chromatogr B. 2019;1105:26–37.

    Article  CAS  Google Scholar 

  33. Dowling P, Henry M, Meleady P, Clarke C, Gately K, O’Byrne K, et al. Metabolomic and proteomic analysis of breast cancer patient samples suggests that glutamate and 12-HETE in combination with CA15-3 may be useful biomarkers reflecting tumour burden. Metabolomics. 2015;11(3):620–35.

    Article  CAS  Google Scholar 

  34. Hsu W-Y, Chen C-J, Huang Y-C, Tsai F-J, Jeng L-B, Lai C-C. Urinary nucleosides as biomarkers of breast, colon, lung, and gastric cancer in Taiwanese. PLoS ONE. 2013;8(12):e81701.

    Article  Google Scholar 

  35. Dutertre M, Lambert S, Carreira A, Amor-Guéret M, Vagner S. DNA damage: RNA-binding proteins protect from near and far. Trends Biochem Sci. 2014;39(3):141–9.

    Article  CAS  Google Scholar 

  36. Beger RD. A review of applications of metabolomics in cancer. Metabolites. 2013;3(3):552–74.

    Article  CAS  Google Scholar 

  37. Dudley E, Bond L. Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrom Rev. 2014;33(4):302–31.

    Article  CAS  Google Scholar 

  38. Liebich H, Di Stefano C, Wixforth A, Schmid H. Quantitation of urinary nucleosides by high-performance liquid chromatography. J Chromatogr A. 1997;763(1–2):193–7.

    Article  CAS  Google Scholar 

  39. Pande D, Negi R, Karki K, Khanna S, Khanna RS, Khanna H. Oxidative damage markers as possible discriminatory biomarkers in breast carcinoma. Transl Res. 2012;160(6):411–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramzy Rashed.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahran, F., Rashed, R., Omran, M. et al. Study on Urinary Candidate Metabolome for the Early Detection of Breast Cancer. Ind J Clin Biochem 36, 319–329 (2021). https://doi.org/10.1007/s12291-020-00905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-020-00905-6

Keywords

Navigation