Skip to main content
Log in

C677T MTHFR Gene Polymorphism is Contributing Factor in Development of Renal Impairment in Young Hypertensive Patients

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Homocysteine concentration affected by the activities of the enzymes methylene tetra-hyrdofolate reductase (MTHFR). Polymorphisms in MTHFR gene associated with an impairment of MTHFR activity. Hyperhomocysteinemia is a result of single nucleotide polymorphisms (SNPs) in MTHFR 677 C>T that can cause homocysteine levels in the blood to increase. The purpose of this study is to investigate the relationships between MTHFR C677T (rs1801133) gene polymorphism, changes in homocysteine concentrations and progress of renal impairment in young adult hypertensive patients. Two hundred young hypertensive patients (age 21–24 years) were involved in this study; they were classified into patients with and without renal impairment in addition to 200 age and sex matched healthy controls. All participants were submitted to laboratory investigations as assay of MTHFR gene polymorphism C677T (rs1801133) by PCR/RFLP, determination of lipid profile, homocysteine and folic acid concentrations in addition to urinary albumin creatinine ratio (UACR). The levels of both homocysteine and UACR in the TT genotype patients were higher than those in the CC genotype group. Individuals who carry the T allele were more risky to hypertension and progress to early renal impairment in young age compared with those carrying the C allele [OR 2.02 (1.33–3.08), P < 0.001]. Genetic variants of C677T MTHFR gene and hyperhomocysteinemia may be responsible for rapid progress of renal impairment in Egyptian young age hypertensive patients. TT genotype or T allele may be considered as a predisposing factor for both elevated Hcy levels and the development of renal impairment. This study believed that lowering of homocysteine level can reduce renal impairment of hypertensive patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

All data generated or analysed during this study are included in this published article.

References

  1. Bowman TS, Gaziano JM, Stampfer MJ, Sesso HD. Homocysteine and risk of developing hypertension in men. J Hum Hypertens. 2006;20:631–4.

    Article  CAS  Google Scholar 

  2. Wang Y, Chen S, Yao T, Li D, Wang Y, Li Y, et al. Homocysteine as a risk factor for hypertension: a 2-year follow-up study. PLoS ONE. 2014;9:e108223.

    Article  Google Scholar 

  3. Ninomiya T, Kiyohara Y, Kubo M, Tanizaki Y, Tanaka K, Okubo K, et al. Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. Am J Kidney Dis. 2004;44:437–45.

    Article  Google Scholar 

  4. Yi F, Zhang AY, Li N, Muh RW, Fillet M, Renert A-F, et al. Inhibition of ceramide-redox signaling pathway blocks glomerular injury in hyperhomocysteinemic rats. Kidney Int. 2006;70:88–96.

    Article  CAS  Google Scholar 

  5. Ansari R, Mahta A, Mallack E, Luo JJ. Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol Seoul Korea. 2014;10:281–8.

    Article  Google Scholar 

  6. Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Gene. 2015;58(1):1–10.

    Article  Google Scholar 

  7. Wu CY, Yang M, Lin M, Li LP, Wen XZ. MTHFR C677T polymorphism was an ethnicity-dependent risk factor for cervical cancer development: evidence based on a meta-analysis. Arch Gynecol Obstet. 2013;288(3):595–605.

    Article  CAS  Google Scholar 

  8. Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, Rozen R. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm Genome. 1998;9:652–6.

    Article  CAS  Google Scholar 

  9. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, et al. United States Renal Data System 2011 Annual Data Report: atlas of chronic kidney disease and end-stage renal disease in the United States. Am J Kidney Dis. 2012;59(A7):e1–420.

    Google Scholar 

  10. Xie D, Yuan Y, Guo J, Yang S, Xu X, Wang Q, et al. Hyperhomocysteinemia predicts renal function decline: a prospective study in hypertensive adults. Sci Rep. 2015;5:16268. https://doi.org/10.1038/srep16268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee ME, Wang H. Homocysteine and hypomethylation. A novel link to vascular disease. Trends Cardiovasc Med. 1999;9:49–54.

    Article  CAS  Google Scholar 

  12. Chen NC, Yang F, Capecci LM, Gu Z, Schafer AI, Durante W, et al. Regulation of homocysteine metabolism and methylation in human and mouse tissues. FASEB J. 2010;24:2804–17.

    Article  CAS  Google Scholar 

  13. Tyagi N, Moshal KS, Lominadze D, Ovechkin AV, Tyagi SC. Homocysteine-dependent cardiac remodeling and endothelial-myocyte coupling in a 2 kidney, 1 clip Goldblatt hypertension mouse model. Can J Physiol Pharmacol. 2005;83:583–94.

    Article  CAS  Google Scholar 

  14. Dayal S, Arning E, Bottiglieri T, Boger RH, Sigmund CD, Faraci FM, et al. Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke. 2004;35:1957–62.

    Article  CAS  Google Scholar 

  15. Firbank MJ, Narayan SK, Saxby BK, Ford GA, O’Brien JT. Homocysteine is associated with hippocampal and white matter atrophy in older subjects with mild hypertension. Int Psychogeriatr. 2010;22:804–11.

    Article  Google Scholar 

  16. Bogdanski P, Miller-Kasprzak E, Pupek-Musialik D, Jablecka A, Lacinski M, Jagodzinski PP, et al. Plasma total homocysteine is a determinant of carotid intima-media thickness and circulating endothelial progenitor cells in patients with newly diagnosed hypertension. Clin Chem Lab Med. 2012;50:1107–13.

    Article  CAS  Google Scholar 

  17. Vyssoulis G, Karpanou E, Kyvelou S-M, Adamopoulos D, Gialernios T, Gymnopoulou E, et al. Associations between plasma homocysteine levels, aortic stiffness and wave reflection in patients with arterial hypertension, isolated office hypertension and normotensive controls. J Hum Hypertens. 2010;24:183–9.

    Article  CAS  Google Scholar 

  18. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 guidelines for the management of arterial hypertension: the task force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25:1105–87. https://doi.org/10.1097/HJH.0b013e3281fc975a.

    Article  CAS  PubMed  Google Scholar 

  19. Jarraya F, Lakhdar R, Kammoun K, Mahfoudh H, Drissa H, Kammoun S, et al. Microalbuminuria: a useful marker of cardiovascular disease. Iran J Kidney Dis. 2013;7:178–86.

    PubMed  Google Scholar 

  20. Candrasatria RM, Adiarto S, Sukmawan R. Methylenetetrahydrofolate reductase C677T gene polymorphism as a risk factor for hypertension in a rural population. Int J Hypertens 2020; 2020, 4267246.

  21. Nair RR, Khanna A, Singh K. MTHFR C677T polymorphism and recurrent early pregnancy loss risk in north Indian population. Reprod Sci (Thousand Oaks Calif). 2012;19(2):210–5.

    Article  CAS  Google Scholar 

  22. Eid SS, Rihani G. Prevalence of factor V Leiden, prothrombin G20210A, and MTHFR C677T mutations in 200 healthy Jordanians. Clin Lab Sci J Am Soc Med Technol. 2004;17:200–2.

    Google Scholar 

  23. Gueant-Rodriguez R-M, Gueant J-L, Debard R, Thirion S, Hong LX, Bronowicki J-P, et al. Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status: a comparative study in Mexican, West African, and European populations. Am J Clin Nutr. 2006;83:701–7.

    Article  CAS  Google Scholar 

  24. Rajeevan H, Soundararajan U, Pakstis AJ, Kidd KK. Introducing the Forensic Research/Reference on Genetics knowledge base, FROG-kb. Investig Genet. 2012;3:18. https://doi.org/10.1186/2041-2223-3-18.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ni W, Li H, Wu A, Zhang P, Yang H, Yang X, Huang X, Jiang L. Lack of association between genetic polymorphisms in three folate-related enzyme genes and male infertility in the Chinese population. J Assist Reprod Genet. 2015;32(3):369–74.

    Article  Google Scholar 

  26. Camprubi C, Pladevall M, Grossmann M, Garrido N, Pons MC, Blanco J. Lack of association of MTHFR rs1801133 polymorphism and CTCFL mutations with sperm methylation errors in infertile patients. J Assist Reprod Genet. 2013;30(9):1125–31.

    Article  Google Scholar 

  27. Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998;338:1042–50. https://doi.org/10.1056/NEJM199804093381507.

    Article  CAS  PubMed  Google Scholar 

  28. Yun L, Xu R, Li G, Yao Y, Li J, Cong D, et al. Homocysteine and the C677T gene polymorphism of its key metabolic enzyme MTHFR are risk factors of early renal damage in hypertension in a Chinese Han population. Medicine (Baltimore). 2015;94:e2389. https://doi.org/10.1097/MD.0000000000002389.

    Article  CAS  Google Scholar 

  29. Wu YL, Hu CY, Lu SS, Gong FF, Feng F, Qian ZZ, et al. Association between methylenetetrahydrofolate reductase (MTHFR) C677t/a1298C polymorphisms and essential hypertension: a systematic review and meta-analysis. Metabolism. 2014;63(12):1503–11.

    Article  CAS  Google Scholar 

  30. Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG. MTHFR 677C–>T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA. 2002;288:2023–31. https://doi.org/10.1001/jama.288.16.2023.

    Article  CAS  PubMed  Google Scholar 

  31. Bottiglieri T. Homocysteine and folate metabolism in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:1103–12. https://doi.org/10.1016/j.pnpbp.2005.06.021.

    Article  CAS  PubMed  Google Scholar 

  32. Pramukarso DT, Faradz SMH, Sari S, Hadisaputro S. Association between methylenetetrahydrofolate reductase (MTHFR) polymorphism and carotid intima medial thickness progression in post ischaemic stroke patient. Ann Transl Med. 2015;3:324. https://doi.org/10.3978/j.issn.2305-5839.2015.12.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abd El-Aziz TA, Mohamed RH. Influence of MTHFR C677T gene polymorphism in the development of cardiovascular disease in Egyptian patients with rheumat-oid arthritis. Gene. 2017;610:127–32.

    Article  CAS  Google Scholar 

  34. Ramanathan G, Harichandana B, Kannan S, Elumalai R, Paul SFD. Association between end-stage diabetic nephropathy and MTHFR (C677T and A1298C) gene polymorphisms. Nephrology. 2019;24(2):155–9.

    Article  CAS  Google Scholar 

  35. Kiseljakovic E, Resic H, Kapur L, Hasic S, Jadric R. Methylenetetrahydrofolate Reductase gene polymorphism in patients receiving hemodialysis. Bosn J Basic Med Sci. 2010;10(Suppl 1):S91–5.

    Article  CAS  Google Scholar 

  36. Cai Weijuan, Yin Liang, Yang Fang, Zhang Lei, Cheng Jiang. Association between hcy levels and the CBS844ins68 and MTHFR C677T polymorphisms with essential hypertension. Biomed Rep. 2014;2(6):861–8.

    Article  CAS  Google Scholar 

  37. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3. https://doi.org/10.1038/ng0595-111.

    Article  CAS  PubMed  Google Scholar 

  38. Bagheri Hamidi A, Namazi N, Mohammad Amoli M, Amani M, Gholami M, Youssefian L, et al. Association of MTHFR C677T polymorphism with elevated homocysteine level and disease development in vitiligo. Int J Immunogenet. 2020. https://doi.org/10.1111/iji.12476

Download references

Acknowledgements

The authors wish to thank all participants of this study.

Funding

No sources of funding except authors.

Author information

Authors and Affiliations

Authors

Contributions

All authors share in design of the study, Khaled A Elhefnawy collected the patients, gathered the clinical data. Hanaa H. Elsaid and Saffa M. Elalawi did the laboratory work of the study. All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published.

Corresponding author

Correspondence to Hanaa H. Elsaid.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for Publication

Not applicable.

Ethics Approval and Consent to Participate

The ethical approval was taken from the Zagazig University Ethics Committee guidelines in Egypt according the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsaid, H.H., El-Hefnawy, K.A. & Elalawi, S.M. C677T MTHFR Gene Polymorphism is Contributing Factor in Development of Renal Impairment in Young Hypertensive Patients. Ind J Clin Biochem 36, 213–220 (2021). https://doi.org/10.1007/s12291-020-00890-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-020-00890-w

Keywords

Navigation