Skip to main content
Log in

p38 MAPK Inhibitor (SB203580) and Metformin Reduces Aortic Protein Carbonyl and Inflammation in Non-obese Type 2 Diabetic Rats

  • Short Communication
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Microvascular and macrovascular diseases are the main causes of morbidity in type 2 diabetes patients through chronic hyperglycaemic condition via oxidative stress and inflammation. Reactive oxygen species (ROS) activate p38 MAPK phosphorylation and inflammation which enhances protein modification by carbonylation. The use of metformin and a p38 MAPK inhibitor is hypothesised to reduce ROS production and inflammation but effects of metformin and p38 MAPK inhibitor (SB203580) on ROS production and inflammation in vascular type 2 diabetes mellitus non-obese (T2DM) have not been investigated. The Goto-Kakizaki rat T2DM model was divided into three groups as T2DM, T2DM treated with 15 mg/kg bw metformin and T2DM treated with 2 mg/kg bw SB203580 for 4 weeks. Rat aortas were isolated and protein carbonyl (PC) contents were measured by spectrophotometric DNPH assay. Aortic IL-1ß level was determined by ELISA. Results showed that aortic PC contents in the T2DM group were significantly higher than in non-diabetic rats. Treatment with metformin or SB203580 significantly reduced PC contents while only metformin significantly reduced IL-1ß levels. Findings indicated that metformin reduced ROS production and inflammation in diabetic vessels and possibly reduce vascular complications in non-obese T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Boffetta P, McLerran D, Chen Y, Inoue M, Sinha R, He J, et al. Body mass index and diabetes in Asia: a cross-sectional pooled analysis of 900,000 individuals in the Asia cohort consortium. PLoS ONE. 2011;6(6):e19930. https://doi.org/10.1371/journal.pone.0019930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ali MK, Narayan KMV, Tandon N. Diabetes and coronary heart disease: current perspectives. Indian J Med Res. 2010;132(5):584–97.

    PubMed  PubMed Central  Google Scholar 

  3. Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–43. https://doi.org/10.1093/eurheartj/eht149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599–622. https://doi.org/10.1210/er.2001-0039.

    Article  CAS  PubMed  Google Scholar 

  5. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98. https://doi.org/10.1038/nri2925.

    Article  CAS  PubMed  Google Scholar 

  6. Pollack RM, Donath MY, LeRoith D, Leibowitz G. Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care. 2016;39(Suppl 2):S244–52. https://doi.org/10.2337/dcS15-3015.

    Article  CAS  PubMed  Google Scholar 

  7. Araújo AA, Pereira ASBF, Medeiros CACX, Brito GAC, Leitão RFC, Araújo LS, et al. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS ONE. 2017;12(8):e0183506. https://doi.org/10.1371/journal.pone.0183506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumphune S, Chattipakorn S, Chattipakorn N. Roles of p38-MAPK in insulin resistant heart: evidence from bench to future bedside application. Curr Pharm Des. 2013;19(32):5742–54.

    Article  CAS  Google Scholar 

  9. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003;9(4):169–76.

    Article  CAS  Google Scholar 

  10. Robbins N, Thompson A, Mann A, Blomkalns AL. Isolation and excision of murine aorta; a versatile technique in the study of cardiovascular disease. J Vis Exp. 2014;93:52172. https://doi.org/10.3791/52172.

    Article  CAS  Google Scholar 

  11. Maneewong K, Mekrungruangwong T, Luangaram S, Thongsri T, Kumphune S. Combinatorial determination of ischemia modified albumin and protein carbonyl in the diagnosis of NonST-elevation myocardial infarction. Indian J Clin Biochem. 2011;26(4):389–95. https://doi.org/10.1007/s12291-011-0118-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Z, Yang Y, Xiang X, Zhu Y, Men J, He M. Estimation of the normal range of blood glucose in rats. Wei sheng yan jiu J Hyg Res. 2010;39(2):133–7.

    CAS  Google Scholar 

  13. Association AD. 2. Classification and diagnosis of diabetes. Diabetes Care. 2017;40(Supplement 1):S11–24.

    Article  Google Scholar 

  14. Son SM. Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes. Diabetes Metab. 2012;36(3):190–8. https://doi.org/10.4093/dmj.2012.36.3.190.

    Article  Google Scholar 

  15. Sasaki S, Inoguchi T. The role of oxidative stress in the pathogenesis of diabetic vascular complications. Diabetes Metab. 2012;36(4):255–61. https://doi.org/10.4093/dmj.2012.36.4.255.

    Article  Google Scholar 

  16. Sarkar P, Kar K, Mondal MC, Chakraborty I, Kar M. Elevated level of carbonyl compounds correlates with insulin resistance in type 2 diabetes. Ann Acad Med Singap. 2010;39(12):909.

    PubMed  Google Scholar 

  17. Bigagli E, Raimondi L, Mannucci E, Colombi C, Bardini G, Rotella C, et al. Lipid and protein oxidation products, antioxidant status and vascular complications in poorly controlled type 2 diabetes. Br J Diabetes Vasc Dis. 2012;12(1):33–9.

    Article  CAS  Google Scholar 

  18. Herder C, Illig T, Rathmann W, Martin S, Haastert B, Muller-Scholze S, et al. Inflammation and type 2 diabetes: results from KORA Augsburg. Gesundheitswesen. 2005;67(Suppl 1):S115–21. https://doi.org/10.1055/s-2005-858252.

    Article  PubMed  Google Scholar 

  19. Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang Z-Y, Yamauchi T, et al. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Investig. 1999;103(2):185–95. https://doi.org/10.1172/JCI3326.

    Article  CAS  PubMed  Google Scholar 

  20. Westermann D, Rutschow S, Van Linthout S, Linderer A, Bucker-Gartner C, Sobirey M, et al. Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia. 2006;49(10):2507–13. https://doi.org/10.1007/s00125-006-0385-2.

    Article  CAS  PubMed  Google Scholar 

  21. Shi Q, Cheng L, Liu Z, Hu K, Ran J, Ge D, et al. The p38 MAPK inhibitor SB203580 differentially modulates LPS-induced interleukin 6 expression in macrophages. Cent Eur J Immunol. 2015;40(3):276–82. https://doi.org/10.5114/ceji.2015.54586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This thesis is sponsored and supported by National Research Council of Thailand. We would like to thank Naresuan University Research endowment fund Grant I.D. Numbers R2559A017, R2560C138. We would like to thank PhD scholarship from Naresuan University for Nuttikarn Nokkaew, Royal Golden Jubilee Ph.D. Program-Thailand Research Fund (TRF) (No. PHD/0087/2556) for Jantira Sanit and (No. PHD/0125/2558) for Kantapitch Kongpol. We are grateful to the Center for Animal Research, Naresuan University for their excellent technical assistance. We would like to thanks ProofRead4Sure service to English proof reading and editing.

Author information

Authors and Affiliations

Authors

Contributions

NN, PM and SK conceived and designed the experiments; NN, RJ, SJ, NT, NM, NS, MI, JS, PA, and KK performed the experiments; NN, PM and SK analyzed the data; SK contributed reagents/materials/analysis tools; NN, NN and SK wrote and prepared the manuscript.

Corresponding author

Correspondence to Nitirut Nernpermpisooth.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nokkaew, N., Mongkolpathumrat, P., Junsiri, R. et al. p38 MAPK Inhibitor (SB203580) and Metformin Reduces Aortic Protein Carbonyl and Inflammation in Non-obese Type 2 Diabetic Rats. Ind J Clin Biochem 36, 228–234 (2021). https://doi.org/10.1007/s12291-019-0815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-019-0815-9

Keywords

Navigation