Skip to main content
Log in

Modes of Calcium Regulation in Ischemic Neuron

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) dysregulation is a major catalytic event. Ca2+ dysregulation leads to neuronal cell death and brain damage result in cerebral ischemia. Neurons are unable in maintaining calcium homeostasis. Ca2+ homeostasis imbalance results in increased calcium influx and impaired calcium extrusion across the plasma membrane. Ca2+ dysregulation is mediated by different cellular and biochemical mechanism, which leads to neuronal loss resulting stroke/cerebral ischemia. A better understanding of the Ca2+ dysregulation might help in the development of new treatments in order to reduce ischemic brain injury. An optimal concentration of Ca2+ does not lead to neurotoxicity in the ischemic neuron. Intracellular Ca2+ act as a trigger for acute neurotoxicity and this cause induction of long-lasting processes leading to necrotic and/or apoptotic post-ischemic delayed neuronal death or of compensatory, neuroprotective mechanisms has increased considerably. Moreover, routes of ischemic Ca2+ influx to neurons, involvement of intracellular Ca2+ stores and Ca2+ buffers, spatial and temporal relations between ischemia-induced increases in intracellular Ca2+ concentration and neurotoxicity will further increase our understanding about underlying mechanism and they can act as a target for the development of drugs. Here, in our article we are trying to provide a brief overview of various Ca2+ influx pathways involve in ischemic neuron and how ischemic neuron attempts to counterbalance this calcium overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gurol ME, Kim JS. Advances in stroke prevention in 2018. J Stroke. 2018;20(2):143–4.

    Article  Google Scholar 

  2. Arulprakash N, Umaiorubahan M. Causes of delayed arrival with acute ischemic stroke beyond the window period of thrombolysis. J Family Med Prim Care. 2018;7(6):1248–52.

    Article  Google Scholar 

  3. Carre E, Ogier M, Boret H, Montcriol A, Bourdon L, Jean-Jacques R. Metabolic crisis in severely head-injured patients: is ischemia just the tip of the iceberg? Front Neurol. 2013;4:146.

    Article  Google Scholar 

  4. Liao QS, Du Q, Lou J, Xu JY, Xie R. Roles of Na+/Ca2+ exchanger 1 in digestive system physiology and pathophysiology. World J Gastroenterol. 2019;25(3):287–99.

    Article  CAS  Google Scholar 

  5. Farooqui AA, Ong WY, Horrocks LA. Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res. 2004;29(11):1961–77.

    Article  CAS  Google Scholar 

  6. Holloway PM, Gavins FNE. Modeling Ischemic Stroke in vitro: status quo and future perspectives. Stroke. 2016;47(2):561–9.

    Article  Google Scholar 

  7. Feno S, Butera G, Vecellio Reane D, Rizzuto R, Raffaello A. Crosstalk between calcium and ROS in pathophysiological conditions. Oxid Med Cell Longev. 2019;15:1–18. https://doi.org/10.1155/2019/9324018.

    Article  Google Scholar 

  8. Sestito S, Daniele S, Pietrobono D, Citi V, Bellusci L, Chiellini G, et al. Memantine prodrug as a new agent for Alzheimer’s Disease. Sci Rep. 2019;9(1):4612.

    Article  Google Scholar 

  9. Engel T, Martinez-Villarreal J, Henke C, Jimenez-Mateos EM, Sanz-Rodriguez A, Alves M, et al. Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury. Mol Neurodegener. 2017;12(1):21.

    Article  Google Scholar 

  10. Yao GY, Zhu Q, Xia J, Chen FJ, Huang M, Liu J, et al. Ischemic post-conditioning confers cerebroprotection by stabilizing VDACs after brain ischemia. Cell Death Dis. 2018;9(10):1033.

    Article  Google Scholar 

  11. Lin Y, Jones BW, Liu A, Vazquéz-Chona FR, Lauritzen JS, Ferrell WD, et al. Rapid glutamate receptor 2 trafficking during retinal degeneration. Mol Neurodegener. 2012;7(1):7.

    Article  Google Scholar 

  12. Nakanishi N, Tu S, Shin Y, Cui J, Kurokawa T, Zhang D. Neuroprotection by the NR3A subunit of the NMDA receptor. J Neurosci. 2009;29(16):5260–5.

    Article  CAS  Google Scholar 

  13. Lee JH, Wei ZZ, Chen D, Gu X, Wei L, Yu SP. A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of the adult mouse. Am J Physiol Cell Physiol. 2015;308(7):C570–7.

    Article  CAS  Google Scholar 

  14. Papouin T, Oliet SH. Organization, control and function of extra synaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci. 2014;369(1654):20130601.

    Article  Google Scholar 

  15. Dore K, Stein IS, Brock JA, Castillo PE, Zito K, Sjöström PJ. Unconventional NMDA Receptor Signaling. J Neurosci. 2017;37(45):10800–7.

    Article  CAS  Google Scholar 

  16. Martin HGS, Wang YT. Blocking the deadly effects of the NMDA receptor in stroke. Cell. 2010;140(2):174–6.

    Article  CAS  Google Scholar 

  17. Weiss JH. Ca permeable AMPA channels in diseases of the nervous system. Front Mol Neurosci. 2011;4:42.

    Article  CAS  Google Scholar 

  18. Flores Saiffe Farías A, Mendizabal AP, Morales JA. An Ontology Systems Approach on Human Brain Expression and Metaproteomics. Front Microbiol. 2018;9:406.

    Article  Google Scholar 

  19. Liu Q, Zhou S, Wang Y, Qi F, Song Y, Long S. A feasible strategy for focal cerebral ischemia-reperfusion injury: remote ischemic post-conditioning. Neural Regen Res. 2014;9(15):1460–3.

    Article  Google Scholar 

  20. Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron. 2014;82(1):24–45.

    Article  CAS  Google Scholar 

  21. Francavilla R, Villette V, Martel O, Topolnik L. Calcium dynamics in dendrites of hippocampal CA1 interneurons in awake mice. Front Cell Neurosci. 2019;13:98.

    Article  Google Scholar 

  22. Shah FA, Zeb A, Ali T, Muhammad T, Faheem M, Alam SI, et al. Identification of proteins differentially expressed in the striatum by melatonin in a middle cerebral artery occlusion rat model—a proteomic and in silico approach. Front Neurosci. 2018;12:1–15.

    Google Scholar 

  23. Chen S, Yu C, Rong L, Li CH, Qin X, Ryu H, et al. Altered synaptic vesicle release and Ca2+ influx at single presynaptic terminals of cortical neurons in a knock-in mouse model of huntington’s disease. Front Mol Neurosci. 2018;11:478.

    Article  Google Scholar 

  24. Kamp MA, Dibué M, Schneider T, Steiger HJ, Hänggi D. Calcium and potassium channels in experimental subarachnoid hemorrhage and transient global ischemia. Stroke Res Treat. 2012;2012:382146.

    PubMed  PubMed Central  Google Scholar 

  25. Sun HS. Role of TRPM7 in cerebral ischaemia and hypoxia. J Physiol. 2017;595(10):3077–83.

    Article  CAS  Google Scholar 

  26. Lepannetier S, Gualdani R, Tempesta S, Schakman O, Seghers F, Kreis A, et al. Activation of TRPC1 channel by metabotropic glutamate receptor mGluR5 modulates synaptic plasticity and spatial working memory. Front Cell Neurosci. 2018;12:318.

    Article  Google Scholar 

  27. Puig B, Brenna S, Magnus T. Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci. 2018;19(9):E2834.

    Article  Google Scholar 

  28. Barron ME, Thies AB, Espinoza JA, Barott KL, Hamdoun A, Tresguerres M. A vesicular Na+/Ca2+ exchanger in coral calcifying cells. PLoS ONE. 2018;13(10):e0205367.

    Article  Google Scholar 

  29. Oliveira AM, Bading H, Mauceri D. Dysfunction of neuronal calcium signaling in aging and disease. Cell Tissue Res. 2014;357(2):381–3.

    Article  Google Scholar 

  30. Bastioli G, Piccirillo S, Castaldo P, Magi S, Tozzi A, Amoroso S, et al. Selective inhibition of mitochondrial sodium-calcium exchanger protects striatal neurons from α-synuclein plus rotenone induced toxicity. Cell Death Dis. 2019;10(2):80.

    Article  Google Scholar 

  31. Li T, Wang L, Ma T, Wang S, Niu J, Li H, et al. Dynamic calcium release from endoplasmic reticulum mediated by ryanodine receptor 3 is crucial for oligodendroglial differentiation. Front Mol Neurosci. 2018;11:1–11.

    Article  Google Scholar 

  32. González-Sánchez P, Del Arco A, Esteban JA, Satrústegui J. Store-operated calcium entry is required for mGluR-dependent long term depression in cortical neurons. Front Cell Neurosci. 2017;11:363.

    Article  Google Scholar 

  33. Schleicher K, Zaccolo M. Using cAMP Sensors to Study Cardiac Nanodomains. J Cardiovasc Dev Dis. 2018;5(1):E17.

    Article  Google Scholar 

  34. Saponaro A, Cantini F, Porro A, Bucchi A, DiFrancesco D, Maione V, et al. A synthetic peptide that prevents cAMP regulation in mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Elife. 2018;7:e35753.

    Article  Google Scholar 

  35. Zhu L, Jones C, Zhang G. The Role of Phospholipase C Signaling in Macrophage-Mediated Inflammatory Response. J Immunol Res 2018;2018:1–9.

    Google Scholar 

  36. Gong D, Chi X, Ren K, Huang G, Zhou G, Yan N, et al. Structure of the human plasma membrane Ca2+-ATPase 1 in complex with its obligatory subunit neuroplastin. Nat Commun. 2018;9(1):3623.

    Article  Google Scholar 

  37. Hirata F, Axelrod J. Phospholipid methylation and biological signal transmission. Science. 1980;209(4461):1082–90.

    Article  CAS  Google Scholar 

  38. Mohan S, Tiwari MN, Biala Y, Yaari Y. Regulation of neuronal Na+/K+-ATPase by specific protein kinases and protein phosphatases. J Neurosci. 2019. https://doi.org/10.1523/JNEUROSCI.0265-19.2019.

    Article  PubMed  Google Scholar 

  39. Obeid R, Hübner U, Bodis M, Graeber S, Geisel J. Effect of adding B-vitamins to vitamin D and calcium supplementation on CpG methylation of epigenetic aging markers. Nutr Metab Cardiovasc Dis. 2018;28(4):411–7.

    Article  CAS  Google Scholar 

  40. Lee RHC, Lee MHH, Wu CYC, Couto E, Silva A, Possoit HE, et al. Cerebral ischemia and neuroregeneration. Neural Regen Res. 2018;13(3):373–85.

    Article  Google Scholar 

  41. Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN. c-Jun N-Terminal Kinases (JNKs) in Myocardial and Cerebral Ischemia/Reperfusion Injury. Front Pharmacol. 2018;9:715.

    Article  Google Scholar 

  42. Siddiqui AN, Siddiqui N, Khan RA, Kalam A, Jabir NR, Kamal MA, et al. Neuroprotective role of steroidal sex hormones: an overview. CNS Neurosci Ther. 2016;22(5):342–50.

    Article  CAS  Google Scholar 

  43. Altura BM, Altura BT, Carella A, Gebrewold A, Murakawa T, Nishio A, et al. Mg2+-Ca2+ interaction in contractility of vascular smooth muscle: Mg2+ versus organic calcium channel blockers on myogenic tone and agonist-induced responsiveness of blood vessels. Can J Physiol Pharmacol. 1987;65:729–45.

    Article  CAS  Google Scholar 

  44. Woods KL, Fletcher S, Roffe C, Haider Y. Intravenous magnesium sulphate in suspected acute myocardial infarction: results of the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet. 1992;339:1553–8.

    Article  CAS  Google Scholar 

  45. Horn J, de Haan RJ, Vermeulen M, Limburg M. Very early nimodipine use in stroke (VENUS): a randomized, double-blind, placebo-controlled trial. Stroke. 2001;32:461–5.

    Article  CAS  Google Scholar 

  46. Wang S, Yang H, Zhang J, Zhang B, Liu T, Gan L, et al. Efficacy and safety assessment of acupuncture and nimodipine to treat mild cognitive impairment after cerebral infarction: a randomized controlled trial. BMC Complement Altern Med. 2016;16:361.

    Article  Google Scholar 

  47. Food and Drug Administration. FDA approves Nymalize - first nimodipine oral solution for use in certain brain hemorrhage patients. Media Release: 14 May 2013. http://www.fda.gov.

Download references

Acknowledgements

Author's acknowledge IMS-BHU, Varanasi.

Author information

Authors and Affiliations

Authors

Contributions

Vijaya Nath Mishra and Vineeta Singh wrote the article. Rameshwar Nath Chaurasia, Deepika Joshi, Abhishek Pathak, and Vibha Pandey helps in write up of the article.

Corresponding author

Correspondence to Vijaya Nath Mishra.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Mishra, V.N., Chaurasia, R.N. et al. Modes of Calcium Regulation in Ischemic Neuron. Ind J Clin Biochem 34, 246–253 (2019). https://doi.org/10.1007/s12291-019-00838-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-019-00838-9

Keywords

Navigation