Skip to main content
Log in

Association of Common Single Nucleotide Polymorphisms of Candidate Genes with Gallstone Disease: A Meta-Analysis

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Numerous studies have investigated the relationship between various candidate gene polymorphisms and gallbladder stone disease (GSD) across ethnic populations; however, the results are often inconsistent. This meta-analysis aims to comprehensively evaluate the influence of common ABCG8 T400K, ABCG8 D19H, ABCG8 C54Y, ApoB100 EcoRI, ApoB100 XbaI, ApoE HhaI, CETP TaqI, CYP7A1 Bsa, LRPAP1 I/D and TNF-α A308G polymorphisms on the risk of gallbladder stone disease. 33 Full-text articles with 9250 cases and 12,029 healthy controls (total 21,279 subjects) were analyzed using the RevMan software (V5.1) and the Comprehensive Meta-analysis software (Version 2.0, BIOSTAT, Englewood, NJ) a Random—effects model was applied. Begg’s funnel plots, Fail-safe number, Egger’s regression intercept and Begg and Mazumdar rank correlation tests were performed for the potential publication bias and sensitivity analysis. The studies were also sub-grouped into European and non-European groups to find out role of ethnicity, if any, on GSD risk. Studies included in quantitative synthesis were ABCG8 T400K rs4148217 (cases/controls, n = 671/1416) (4 studies), ABCG8 D19H rs11887534 (n = 1633/2306) (8 studies), ABCG8 C54Y rs4148211 (n = 445/1194) (3 studies), ApoB100 EcoRI rs1042031 (n = 503/390) (4 studies), ApoB100 XbaI rs693 (n = 1214/1389) (9 studies), ApoE HhaI rs429358 (n = 1335/1482) (12 studies), CETP TaqI rs708272 (n = 1038/1025) (5 studies), CYP7A1 Bsa rs3808607 (n = 565/514) (3 studies), LRPAP1 I/D rs11267919 (n = 849/900) (3 studies), TNF-α A308G rs1800629 (n = 997/1413) (3 studies). The combined results displayed significant association of ABCG8 D19H (GC + CC) [OR with 95%CI = 2.2(1.7–2.8); p < 0.00001], ABCG8 Y54C (GA + GG) [OR with 95%CI = 0.65(0.5–0.9); p = 0.01]. APOB100 EcoRI (GG vs. AA) [OR with 95%CI = 0.51(0.3–0.9); p = 0.05], (GG vs. GA) [OR with 95%CI = 0.6(0.4–0.9); p = 0.04], (GA + AA) [OR with 95%CI = 0.6(0.4–0.9); p = 0.006]. APOB Xba I (X vs. X+) [OR with 95%CI = 0.53(0.3–0.8); p = 0.006. APOE Hha I (E4/E4 vs. E3/E3) [OR with 95%CI = 3.5(1.1–14.9); p = 0.04] and LRPAP1 I/D (ID + II) [OR with 95%CI = 1.27(1.0–1.6); p = 0.03] with the GSD risk. It was found that ABCG D19H was significantly associated with GSD in both European and Non-European populations. While APOB XbaI and LRPAP1 I/D markers were associated with gallstone disease only in Non- European population. Additionally, APOE HhaI and APOB 100 ECoRI were found to be associated with GSD only in European population. The results of quantitative synthesis suggest that the ABCG8 D19H polymorphism was associated with the increased risk of GSD in both European and Non-European populations, APOE Hha I and LRPAP1 I/D polymorphisms were associated with the increased risk of GSD in European and Non-European population respectively. However, no association was found in ABCG8 T400K, CETP Taq1, CYP7A1 Bsa and TNF-A308G polymorphisms with Gallstone Disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Everhart JE, Khare M, Hill M, Maurer KR. Prevalence and ethnic differences in gallbladder disease in the United States. Gastroenterology. 1999;117(3):632–9.

    CAS  PubMed  Google Scholar 

  2. Sandler RS, Everhart JE, Donowitz M, Adams E, Cronin K, Goodman C, et al. The burden of selected digestive diseases in the United States. Gastroenterology. 2002;122(5):1500–11.

    PubMed  Google Scholar 

  3. Khuroo MS, Mahajan R, Zargar SA, Javid G, Sapru S. Prevalence of biliary tract disease in India: a sonographic study in adult population in Kashmir. Gut. 1989;30(2):201–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Marschall HU, Einarsson C. Gallstone disease. J Intern Med. 2007;261(6):529–42.

    CAS  PubMed  Google Scholar 

  5. Vitek L, Carey MC. New pathophysiological concepts underlying pathogenesis of pigment gallstones. Clin Res Hepatol Gastroenterol. 2012;36(2):122–9.

    CAS  PubMed  Google Scholar 

  6. Portincasa P, Moschetta A, Palasciano G. Cholesterol gallstone disease. The Lancet. 2006;368(9531):230–9.

    CAS  Google Scholar 

  7. Marschall H-U, Katsika D, Rudling M, Einarsson C. The genetic background of gallstone formation: an update. Biochem Biophys Res Commun. 2010;396(1):58–62.

    CAS  PubMed  Google Scholar 

  8. Katsika D, Grjibovski A, Einarsson C, Lammert F, Lichtenstein P, Marschall HU. Genetic and environmental influences on symptomatic gallstone disease: a Swedish study of 43,141 twin pairs. Hepatology. 2005;41(5):1138–43.

    CAS  PubMed  Google Scholar 

  9. Bertomeu A, Ros E, Zambon D, Vela MA, Perez-Ayuso RM, Targarona E, et al. Apolipoprotein E polymorphism and gallstones. Gastroenterology. 1996;111(6):1603–10.

    CAS  PubMed  Google Scholar 

  10. Xue P, Niu W-Q, Jiang Z-Y, Zheng M-H, Fei J. A meta-analysis of apolipoprotein E gene εµ2/εµ3/εµ4 polymorphism for gallbladder stone disease. PLoS ONE. 2012;7(9):e45849.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang Z-Y, Han T-Q, Suo G-J, Feng D-X, Chen S, Cai X-X, et al. Polymorphisms at cholesterol 7Î ± -hydroxylase, apolipoproteins B and E and low density lipoprotein receptor genes in patients with gallbladder stone disease. World J Gastroenterol. 2004;10(10):1508.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sn-Cn Jaime, Maribel A-M, Am-M Eliakym, Jose R-N, Julio G, Laura S-M, et al. ApoB-100, ApoE and CYP7A1 gene polymorphisms in Mexican patients with cholesterol gallstone disease. World J Gastroenterol. 2010;16(37):4685.

    Google Scholar 

  13. Kesaniemi YA, Ehnholm C, Miettinen TA. Intestinal cholesterol absorption efficiency in man is related to apoprotein E phenotype. J Clin Investig. 1987;80(2):578–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Weintraub MS, Eisenberg S, Breslow JL. Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E. J Clin Investig. 1987;80(6):1571–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang CY, Gu Z-W, Weng SA, Kim TW, Chen S-H, Pownall HJ, et al. Structure of apolipoprotein B-100 of human low density lipoproteins. Arterioscler Off J Am Heart Assoc. 1989;9(1):96–108.

    CAS  Google Scholar 

  16. Regis-Bailly A, Visvikis S, Steinmetz J, Feldmann L, Briancon S, Danchin N, et al. Frequencies of five genetic polymorphisms in coronarographed patients and effects on lipid levels in a supposedly healthy population. Clin Genet. 1996;50(5):339–47.

    CAS  PubMed  Google Scholar 

  17. Pouliot M-C, Despres J-P, Dionne FT, Vohl M-C, Moorjani S, Prud’homme D, et al. ApoB-100 gene EcoRI polymorphism. Relations to plasma lipoprotein changes associated with abdominal visceral obesity. Arterioscler Thromb J Vasc Biol. 1994;14(4):527–33.

    CAS  Google Scholar 

  18. Wang HH, Portincasa P, Wang DQ. Molecular pathophysiology and physical chemistry of cholesterol gallstones. Front Biosci. 2008;13(4):401–23.

    CAS  PubMed  Google Scholar 

  19. Stender S, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Sterol transporter adenosine triphosphate–binding cassette transporter G8, gallstones, and biliary cancer in 62,000 individuals from the general population. Hepatology. 2011;53(2):640–8.

    CAS  PubMed  Google Scholar 

  20. Xu H-L, Cheng J-R, Andreotti G, Gao Y-T, Rashid A, Wang B-S, et al. Cholesterol metabolism gene polymorphisms and the risk of biliary tract cancers and stones: a population-based case-control study in Shanghai China. Carcinogenesis. 2010;32(1):58–62.

    PubMed  Google Scholar 

  21. Srivastava A, Srivastava A, Srivastava K, Choudhuri G, Mittal B. Role of ABCG8 D19H (rs11887534) variant in gallstone susceptibility in northern India. J Gastroenterol Hepatol. 2010;25(11):1758–62.

    CAS  PubMed  Google Scholar 

  22. Siddapuram SP, Mahurkar S, Duvvuru NR, Mitnala S, Guduru VR, Rebala P, et al. Hepatic cholesterol transporter ABCG8 polymorphisms in gallstone disease in an Indian population. J Gastroenterol Hepatol. 2010;25(6):1093–8.

    CAS  PubMed  Google Scholar 

  23. Kuo KK, Shin SJ, Chen ZC, Yang YH, Yang JF, Hsiao PJ. Significant association of ABCG5 604Q and ABCG8 D19H polymorphisms with gallstone disease. Br J Surg. 2008;95(8):1005–11.

    CAS  PubMed  Google Scholar 

  24. Buch S, Schafmayer C, Volzke H, Becker C, Franke A, von Eller-Eberstein H, et al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat Genet. 2007;39(8):995.

    CAS  PubMed  Google Scholar 

  25. Grunhage F, Acalovschi M, Tirziu S, Walier M, Wienker TF, Ciocan A, et al. Increased gallstone risk in humans conferred by common variant of hepatic ATP-binding cassette transporter for cholesterol. Hepatology. 2007;46(3):793–801.

    PubMed  Google Scholar 

  26. Wang Y, Jiang Z-Y, Fei J, Xin L, Cai Q, Jiang Z-H, et al. ATP binding cassette G8 T400 K polymorphism may affect the risk of gallstone disease among Chinese males. Clin Chim Acta. 2007;384(1–2):80–5.

    CAS  PubMed  Google Scholar 

  27. Katsika D, Magnusson P, Krawczyk M, Grunhage F, Lichtenstein P, Einarsson C, et al. Gallstone disease in Swedish twins: risk is associated with ABCG8 D19H genotype. J Intern Med. 2010;268(3):279–85.

    CAS  PubMed  Google Scholar 

  28. von Kampen O, Buch S, Nothnagel M, Azocar L, Molina H, Brosch M, et al. Genetic and functional identification of the likely causative variant for cholesterol gallstone disease at the ABCG5/8 lithogenic locus. Hepatology. 2013;57(6):2407–17.

    Google Scholar 

  29. Einarsson C, Ellis E, Abrahamsson A, Ericzon B-G, Bjorkhem I, Axelson M. Bile acid formation in primary human hepatocytes. World J Gastroenterol. 2000;6(4):522.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu G, Shneider BL, Shefer S, Nguyen LB, Batta AK, Tint GS, et al. Ileal bile acid transport regulates bile acid pool, synthesis, and plasma cholesterol levels differently in cholesterol-fed rats and rabbits. J Lipid Res. 2000;41(2):298–304.

    CAS  PubMed  Google Scholar 

  31. Ito T, Kawata S, Imai Y, Kakimoto H, Trzaskos JM, Matsuzawa Y. Hepatic cholesterol metabolism in patients with cholesterol gallstones: enhanced intracellular transport of cholesterol. Gastroenterology. 1996;110(5):1619–27.

    CAS  PubMed  Google Scholar 

  32. Reihner E, Angelin B, Bjorkhem I, Einarsson K. Hepatic cholesterol metabolism in cholesterol gallstone disease. J Lipid Res. 1991;32(3):469–75.

    CAS  PubMed  Google Scholar 

  33. Shoda J, He BF, Tanaka N, Matsuzaki Y, Osuga T, Yamamori S, et al. Increase of deoxycholate in supersaturated bile of patients with cholesterol gallstone disease and its correlation with de novo syntheses of cholesterol and bile acids in liver, gallbladder emptying, and small intestinal transit. Hepatology. 1995;21(5):1291–302.

    CAS  PubMed  Google Scholar 

  34. Wang J, Freeman DJ, Grundy SM, Levine DM, Guerra R, Cohen JC. Linkage between cholesterol 7alpha-hydroxylase and high plasma low-density lipoprotein cholesterol concentrations. J Clin Investig. 1998;101(6):1283–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Couture P, Otvos JD, Cupples LA, Wilson PWF, Schaefer EJ, Ordovas JM. Association of the A-204C polymorphism in the cholesterol 7α ± -hydroxylase gene with variations in plasma low density lipoprotein cholesterol levels in the Framingham Offspring Study. J Lipid Res. 1999;40(10):1883–9.

    CAS  PubMed  Google Scholar 

  36. Baez S, Tsuchiya Y, Calvo A, Pruyas M, Nakamura K, Kiyohara C, et al. Genetic variants involved in gallstone formation and capsaicin metabolism, and the risk of gallbladder cancer in Chilean women. World J Gastroenterol. 2010;16(3):372.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Barter PJ, Rye K-A. Cholesteryl ester transfer protein inhibition is not yet dead-pro. Arterioscler Thromb Vasc Biol. 2016;36(3):439–41.

    CAS  PubMed  Google Scholar 

  38. Benes P, Muzik J, Benedik J, Elbl L, Znojil V, Vacha J. Relation between the insertion/deletion polymorphism in the gene coding for receptor associated protein (RAP) and plasma apolipoprotein AI (apoAI) and high-density lipoprotein cholesterol (HDL) levels. Clin Genet. 2000;57(4):309–10.

    CAS  PubMed  Google Scholar 

  39. Pandey SN, Dixit M, Choudhuri G, Mittal B. Lipoprotein receptor associated protein (LRPAP1) insertion/deletion polymorphism: association with gallbladder cancer susceptibility. J Gastrointest Cancer. 2006;37(4):124–8.

    Google Scholar 

  40. Ebadi P, Daneshmandi S, Ghasemi A, Karimi MH. Cytokine single nucleotide polymorphisms in patients’ with gallstone: dose TGF-Î2 gene variants affect gallstone formation? Mol Biol Rep. 2013;40(11):6255–60.

    CAS  Google Scholar 

  41. Renner O, Lutjohann D, Richter D, Strohmeyer A, Schimmel S, Muller O, et al. Role of the ABCG8 19H risk allele in cholesterol absorption and gallstone disease. BMC Gastroenterol. 2013;13(1):30.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Srivastava A, Tulsyan S, Pandey SN, Choudhuri G, Mittal B. Single nucleotide polymorphism in the ABCG8 transporter gene is associated with gallbladder cancer susceptibility. Liver Int. 2009;29(6):831–7.

    CAS  PubMed  Google Scholar 

  43. Kurzawski M, Juzyszyn Z, Modrzejewski A, Pawlik A, Wiatr M, Czerny B, et al. Apolipoprotein B (APOB) gene polymorphism in patients with gallbladder disease. Arch Med Res. 2007;38(3):360–3.

    CAS  PubMed  Google Scholar 

  44. Rudzinska K, Bogacz A, Kotrych D, Wolski H, Majchrzycki M, Seremak-Mrozikiewicz A, et al. The APOB gene polymorphism in the pathogenesis of gallstone disease in pre-and postmenopausal women. Przeglad Menopauzalny Menopause Rev. 2015;14(1):35.

    CAS  Google Scholar 

  45. Juvonen T, Savolainen MJ, Kairaluoma MI, Lajunen LH, Humphries SE, Kesaniemi YA. Polymorphisms at the apoB, apoA-I, and cholesteryl ester transfer protein gene loci in patients with gallbladder disease. J Lipid Res. 1995;36(4):804–12.

    CAS  PubMed  Google Scholar 

  46. Dixit M, Srivastava A, Choudhuri G, Mittal B. Higher alleles of apolipoprotein B gene 32 VNTR: risk for gallstone disease. Indian J Clin Biochem. 2008;23(2):123–9.

    PubMed  PubMed Central  Google Scholar 

  47. Pandey SN, Srivastava A, Dixit M, Choudhuri G, Mittal B. Haplotype analysis of signal peptide (insertion/deletion) and XbaI polymorphisms of the APOB gene in gallbladder cancer. Liver Int. 2007;27(7):1008–15.

    CAS  PubMed  Google Scholar 

  48. Mella JG, Schirin-Sokhan R, Rigotti A, Pimentel F, Villarroel L, Wasmuth HE, et al. Genetic evidence that apolipoprotein E4 is not a relevant susceptibility factor for cholelithiasis in two high-risk populations. J Lipid Res. 2007;48(6):1378–85.

    CAS  PubMed  Google Scholar 

  49. Dixit M, Choudhuri G, Mittal B. Association of APOE-C1 gene cluster polymorphisms with gallstone disease. Dig Liver Dis. 2006;38(6):397–403.

    CAS  PubMed  Google Scholar 

  50. Hasegawa K, Terada S, Kubota K, Itakura H, Imamura H, Ohnishi S, et al. Effect of apolipoprotein E polymorphism on bile lipid composition and the formation of cholesterol gallstone. Am J Gastroenterol. 2003;98(7):1605–9.

    CAS  PubMed  Google Scholar 

  51. Martinez-Lopez E, Curiel-Lopez F, Hernandez-Nazara A, Moreno-Luna LE, Ramos-Marquez ME, Roman S, et al. Influence of ApoE and FABP2 polymorphisms and environmental factors in the susceptibility to gallstone disease. Ann Hepatol. 2015;14(4):515–23.

    CAS  PubMed  Google Scholar 

  52. Lin Q-Y, Du J-P, Zhang M-Y, Yao Y-G, Li L, Cheng N-S, et al. Effect of apolipoprotein E gene Hha I restricting fragment length polymorphism on serum lipids in cholecystolithiasis. World J Gastroenterol. 1999;5(3):228.

    PubMed  PubMed Central  Google Scholar 

  53. Niemi M, Kervinen K, Rantala A, Kauma H, Paivansalo M, Savolainen MJ, et al. The role of apolipoprotein E and glucose intolerance in gallstone disease in middle aged subjects. Gut. 1999;44(4):557–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dixit M, Choudhuri G, Mittal B. Association of lipoprotein receptor, receptor-associated protein, and metabolizing enzyme gene polymorphisms with gallstone disease: a case–control study. Hepatol Res. 2006;36(1):61–9.

    CAS  PubMed  Google Scholar 

  55. Pinheiro-Junior S, Pinhel MAS, Nakazone MA, Pinheiro A, Amorim GFS, Florim GMS, et al. Effect of genetic variants related to lipid metabolism as risk factors for cholelithiasis after bariatric surgery in Brazilian population. Obes Surg. 2012;22(4):623–33.

    PubMed  Google Scholar 

  56. Juzyszyn Z, Kurzawski M, Lener A, Modrzejewski A, Pawlik A, Drozdzik M. Cholesterol 7α ± -hydrolase (CYP7A1) c. − 278A > C promoter polymorphism in gallstone disease patients. Genet Test. 2008;12(1):97–100.

    CAS  PubMed  Google Scholar 

  57. Srivastava A, Choudhuri G, Mittal B. CYP7A1 (−204 A > C; rs3808607 and −469 T > C; rs3824260) promoter polymorphisms and risk of gallbladder cancer in North Indian population. Metabolism. 2010;59(6):767–73.

    CAS  PubMed  Google Scholar 

  58. Juzyszyn Z, Kurzawski M, Modrzejewski A, Sulikowski T, Pawlik A, Czerny B, et al. Low-density lipoprotein receptor-related protein-associated protein (LRPAP1) gene IVS5 insertion/deletion polymorphism is not a risk factor for gallstone disease in a Polish population. Dig Liver Dis. 2008;40(2):122–5.

    CAS  PubMed  Google Scholar 

  59. Dixit M, Choudhuri G, Keshri LJ, Mittal B. Association of low density lipoprotein receptor related protein-associated protein (LRPAP1) gene insertion/deletion polymorphism with gallstone disease. J Gastroenterol Hepatol. 2006;21(5):847–9.

    CAS  PubMed  Google Scholar 

  60. Hsing AW, Sakoda LC, Rashid A, Andreotti G, Chen J, Wang B-S, et al. Variants in inflammation genes and the risk of biliary tract cancers and stones: a population-based study in China. Can Res. 2008;68(15):6442–52.

    CAS  Google Scholar 

  61. Vishnoi M, Pandey SN, Choudhury G, Kumar A, Modi DR, Mittal B. Do TNFA-308 G/A and IL6-174 G/C gene polymorphisms modulate risk of gallbladder cancer in the north Indian population? Asian Pac J Cancer Prev. 2007;8(4):567–72.

    PubMed  Google Scholar 

  62. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    PubMed  Google Scholar 

  63. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    PubMed  PubMed Central  Google Scholar 

  64. Harbord RM, Egger M, Sterne JAC. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006;25(20):3443–57.

    PubMed  Google Scholar 

  65. Jiang Z-Y, Cai Q, Chen E-Z. Association of three common single nucleotide polymorphisms of ATP binding cassette G8 gene with gallstone disease: a meta-analysis. PLoS ONE. 2014;9(1):e87200.

    PubMed  PubMed Central  Google Scholar 

  66. Joshi AD, Andersson C, Buch S, Stender S, Noordam R, Weng L-C, et al. Four susceptibility loci for gallstone disease identified in a meta-analysis of genome-wide association studies. Gastroenterology. 2016;151(2):351–63.

    CAS  PubMed  Google Scholar 

  67. Vrablik M, Ceska R, Horinek A. Major apolipoprotein B-100 mutations in lipoprotein metabolism and atherosclerosis. Physiol Res. 2001;50(4):337–43.

    CAS  PubMed  Google Scholar 

  68. Gu W, Zhang M, Wen S. Association between the APOB XbaI and EcoRI polymorphisms and lipids in Chinese: a meta-analysis. Lipids Health Dis. 2015;14(1):123.

    PubMed  PubMed Central  Google Scholar 

  69. Gong Y, Zhang L, Bie P, Wang H. Roles of ApoB-100 gene polymorphisms and the risks of gallstones and gallbladder cancer: a meta-analysis. PLoS ONE. 2013;8(4):e61456.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arterioscler Off J Am Heart Assoc. 1988;8(1):1–21.

    CAS  Google Scholar 

  71. Poirier J, Bertrand P, Kogan S, Gauthier S, Davignon J, Bouthillier D. Apolipoprotein E polymorphism and Alzheimer’s disease. The Lancet. 1993;342(8873):697–9.

    CAS  Google Scholar 

  72. Schwiegelshohn B, Presley JF, Gorecki M, Vogel T, Carpentier YA, Maxfield FR, et al. Effects of apoprotein E on intracellular metabolism of model triglyceride-rich particles are distinct from effects on cell particle uptake. J Biol Chem. 1995;270(4):1761–9.

    CAS  PubMed  Google Scholar 

  73. Ho Y-Y, Al-Haideri M, Mazzone T, Vogel T, Presley JF, Sturley SL, et al. Endogenously expressed apolipoprotein E has different effects on cell lipid metabolism as compared to exogenous apolipoprotein E carried on triglyceride-rich particles. Biochemistry. 2000;39(16):4746–54.

    CAS  PubMed  Google Scholar 

  74. Kervinen K, Savolainen MJ, Salokannel J, Hynninen A, Heikkinen J, Ehnholm C, et al. Apolipoprotein E and B polymorphisms-longevity factors assessed in nonagenarians. Atherosclerosis. 1994;105(1):89–95.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grant to BM (Emeritus Scientist ICMR) from Department of Science and Technology (DST), Govt. of India. DST NO: SERB/F/3512/2014-15.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and extracted data: RDM, TC. Analyzed the data BM, TC. Wrote the paper TC, BM.

Corresponding author

Correspondence to B. Mittal.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Ethical Rules

The Included Chauhan T. et al. (unpublished) is a case control study. Blood samples were collected after obtaining the informed consent of the enrolled individuals. All the DNA samples for this study were used after Institutional (Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) Lucknow, UP India) Ethical Committee approval. Rest of the included studies are already published, so they are likely to have their own Institutional Ethical Committee approvals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, T., Mittal, R.D. & Mittal, B. Association of Common Single Nucleotide Polymorphisms of Candidate Genes with Gallstone Disease: A Meta-Analysis. Ind J Clin Biochem 35, 290–311 (2020). https://doi.org/10.1007/s12291-019-00832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-019-00832-1

Keywords

Navigation