Skip to main content
Log in

Chronomics of Circulating Plasma Lipid Peroxides and Antioxidant Enzymes in Renal Stone Formers

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The chronome of lipid peroxidation and anti-oxidant defense mechanisms may relate to the efficacy and management of time qualified preventive therapeutic and dietary interventions. One hundred renal stone patients, 20–60 years of age, and 50 clinically healthy volunteers, 21–45 years, were synchronized for 1 week with diurnal activity from 06:00 to 22:00 and nocturnal rest. All subjects took their usual meals three times daily (breakfast around 08:30, lunch around 13:00, and dinner around 20:30) with usual fluid intake. Drugs known to affect free radical system were not taken. Blood samples were collected at 6-h intervals for 24-h under standardized, presumably 24-h synchronized conditions. Determinations included plasma lipid peroxides, in terms of malondialdehyde (MDA) and blood superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) activities. A marked circadian variation was demonstrated for each studied variable by population-mean cosinor in renal stone patients and healthy participants (p < 0.001). By comparison to healthy subjects, parameter tests indicate that the stone formers had a higher MESOR of MDA, but a lower MESOR of SOD, GPx, GR and CAT. Furthermore, the patients also differed from the healthy controls in terms of their circadian amplitude and acrophase (tested jointly) of all variables (p < 0.001). Mapping the broader time structure with multifrequency circadian characteristics of oxidants and anti-oxidants is needed for exploring their role as marker in the treatment and management of urolithiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strohmaier WL. Recent advances in understanding and managing urolithiasis [version1; referees:3 approved]. F1000Research. 2016;5(F1000 Rev):2651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kizivat T, Smolic M, Maric I, Levak ML, Smolic R, Curcic IB, et al. Antioxidant pre-treatment reduces the toxic effects of oxalate on renal epithelial cells in a cell culture model of urolithiasis. Int J Enviorn Res Public Health. 2017;14:109–33.

    Article  CAS  Google Scholar 

  3. Hesse A, Brändle E, Wilbert D, Köhrmann KU, Alken P. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 versus 2000. Eur Urol. 2003;44(6):709–13.

    Article  CAS  PubMed  Google Scholar 

  4. Strohmaier WL. Economics of stone disease/treatment. Arab J Urol. 2012;10(3):273–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moore-Ede MC. Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol. 1986;250:R737–52.

    CAS  PubMed  Google Scholar 

  6. Moore-Ede MC, Herd JA. Renal electrolyte circadian rhythms: independence from feeding and activity patterns. Am J Physiol. 1977;232:F128–35.

    Article  CAS  PubMed  Google Scholar 

  7. Eknoyan G. History of urolithiasis. Clin Rev Bone Miner Metabol. 2004;2:177–85.

    Article  Google Scholar 

  8. Ramello A, Vitale C, Marangella M. Epidemiology of nephrolithiasis. J Nephrol. 2000;13(Suppl):S45–50.

    PubMed  Google Scholar 

  9. Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003;63:1817–23.

    Article  PubMed  Google Scholar 

  10. Singh RK, Bansal A, Bansal SK, Singh AK, Mahdi AA. Circadian periodicity of urinary inhibitor of calcium oxalate crystallization in healthy Indians and renal stone formers. Eur Urol. 1993;24(3):387–92.

    Article  CAS  PubMed  Google Scholar 

  11. Singh RB, Niaz MA, Cornelissen G, Otsuka K, Siegelova J, Fiser B, et al. Circadian rhythmicity of circulating vitamin concentrations. Scripta Medica (Brno). 2001;74(2):93–6.

    CAS  Google Scholar 

  12. Mills JN. Human circadian rhythms. Physiol Rev. 1966;46:128–71.

    Article  CAS  PubMed  Google Scholar 

  13. Berg W, Brundigg P, Bothor C, Schneider J. Biological rhythmicity and crystallization—urine profiles and Se-studies on calcium oxalate stone genesis. Int Urol Nephrol. 1982;14:363–72.

    Article  CAS  PubMed  Google Scholar 

  14. Singh R, Singh RK, Tripathi AK, Gupta N, Kumar A, Singh AK, et al. Circadian periodicity of plasma lipid peroxides and antioxidant enzymes in pulmonary tuberculosis. Ind J Clin Biochem. 2004;19(1):14–20.

    Article  CAS  Google Scholar 

  15. Singh R, Singh RK, Mahdi AA, Singh RK, Kumar A, Tripathi AK, et al. Circadian periodicity of plasma lipid peroxides and other antioxidants as putative markers in gynecological malignancies. In Vivo. 2003;17:593–600.

    CAS  PubMed  Google Scholar 

  16. Singh R, Singh RK, Tripathi AK, Cornelissen G, Schartzkopff O, Otsuka K, et al. Chronomics of circulating plasma lipid peroxides, antioxidant enzymes and other related molecules in cirrhosis of liver. In the memory of late Shri Chetan Singh. Biomed Pharmacother. 2005;59(Suppl 1):S229–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh R, Singh RK, Masood T, Tripathi AK, Mahdi AA, Singh RK, et al. Circadian time structure of circulating plasma oxides, antioxidant enzymes and other small molecules in peptic ulcers. Clin Chim Acta. 2015;451:222–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kushwaha RS, Gupta RC, Sharma JP, Sharma S, Singh RK, Cornelissen G. Circadian periodicity of plasma lipoid peroxides, uric acid and ascorbic acid in renal stone formers. Ind J Clin Biochem. 2017;32(2):220–4.

    Article  CAS  Google Scholar 

  19. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    Article  CAS  PubMed  Google Scholar 

  20. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.

    CAS  PubMed  Google Scholar 

  21. Pagila DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;2:158–69.

    Google Scholar 

  22. Hazelton GA, Lang CA. GSH content of tissue in aging mouse. Biochem J. 1980;188:25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aebi H, Suter H. Protective function of reduced glutathione against the effect of pro-oxidative substances and of irradiation in the red Cell. In: Flohe I, Benhar HC, Sies H, Waller HD, Wendel A, editors. Glutathione. Stuttgart: Georg Thieme; 1974. p. 192–9.

    Google Scholar 

  24. Halberg F, Johnson EA, Nelson W, Runge W, Sothern R. Autorhythmometry-procedures for physiologic self-measurements and their analysis. Physiol Teach. 1972;1:1–11.

    Google Scholar 

  25. Bingham C, Arbogast B, Cornelissen G, Lee JK, Halberg F. Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia. 1982;9:397–439.

    CAS  PubMed  Google Scholar 

  26. Cornelissen G, Halberg F. Chronomedicine. In: Armitage P, Colton T, editors. Encyclopedia of biostatistics, vol. 1. Chichester: Wiley; 1998. p. 642–9.

    Google Scholar 

  27. Elliot JS, Euseblio E. Calcium oxalate solubility. The effects of trace metals. J Invest Urol. 1967;9:428.

    Google Scholar 

  28. Tungsanga K, Sriboonlue P, Futrakul P, Yachantha C. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res. 2005;33(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  29. Cornélissen G, Halberg E, Halberg F, Halberg J, Sampson M, Hillman D, Nelson W, Sánchez de la Peña S, Wu J, Delmore P, Marques N, Marques MD, Fernandez JR, Hermida RC, Guillaume F, Carandente F. Chronobiology: a frontier in biology and medicine. Chronobiologia. 1989;16:383–408.

    PubMed  Google Scholar 

  30. Singh RB, Hristova K, Pella D, Feckado J, Chaves H, Mondal RN, et al. Extended consensus on guidelines for assessment of risk and management of hypertension. A scientific statement of the International College of Cardiology—Thank you Dr Franz Halberg. World Heart J. 2014;6(1):63–72.

    Google Scholar 

  31. Bonny O, Firsov D. Circadian clock and the concept of homeostasis. Cell Cycle. 2009;8:4015–6.

    Article  CAS  PubMed  Google Scholar 

  32. Firsov D, Bonny O. Circadian regulation of renal function. Kidney Int. 2010;78:640–5.

    Article  PubMed  Google Scholar 

  33. Zelko I, Mariani T, Folz R. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution and expression. Free Radic Biol Med. 2002;33:337–49.

    Article  CAS  PubMed  Google Scholar 

  34. Banniste J, Bannister W, Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem. 1987;22:111–80.

    Article  Google Scholar 

  35. Ma MC, Chen YS, Huang HS. Erythrocyte oxidative stress in patients with calcium oxalate stones correlates with stone size and renal tubular damage. Urology. 2014;83(2):510.

    Article  PubMed  Google Scholar 

  36. Khan SR. Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res. 2005;33(5):349–57.

    Article  CAS  PubMed  Google Scholar 

  37. Wilson JF. Facing an uncertain climate. Ann Intern Med. 2007;146:153–6.

    Article  PubMed  Google Scholar 

  38. Fakheri RJ, Goldfarb DS. Ambient temperature as a contributor to kidney stone formation: implications of global warming. Kidney Int. 2011;79:1178–85.

    Article  PubMed  Google Scholar 

  39. Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293:455–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Hon. Chairman, Shri Guru Ram Rai Education Mission for his constant support and guidance in pursuing such studies in our laboratory. We are also indebted to the staff of the Department of Biochemistry, SGRR Institute of Medical and Health Sciences for their technical assistance. Our special thanks to Dr Rachit Garg for patient enrolment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj K. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, R.S., Gupta, R.C., Sharma, S. et al. Chronomics of Circulating Plasma Lipid Peroxides and Antioxidant Enzymes in Renal Stone Formers. Ind J Clin Biochem 34, 195–200 (2019). https://doi.org/10.1007/s12291-017-0726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-017-0726-6

Keywords

Navigation