Skip to main content
Log in

Experimental Validation of Antidiabetic Potential of Cayratia trifolia (L.) Domin: An Indigenous Medicinal Plant

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The present study was undertaken to evaluate antidiabetic and antioxidant activities of Cayratia trifolia root extract against streptozotocin induced diabetes in experimental rats to scientifically validate its use against diabetes in some parts of India. Ethanolic extract, showing the highest activity in in vitro experiments, was prepared in saline and administered orally to streptozotocin induced albino Wistar diabetic rats for 21 days. Biochemical parameters liver and muscles glycogen and in vivo antioxidant activity in normal, diabetic control, standard (metformin) and treated animals were determined and compared. Attempt was made to isolate, purify and characterize one of the major secondary metabolites in extract by range of chromatographic and spectroscopic techniques. Treatment of streptozotocin induced diabetic rats with ethanolic root extract (500 mg/kg) caused significant (P < 0.01) reduction in blood glucose (312–178 mg/dL), increase in body weight (181–219 g) and serum insulin (1.28–2.26 IU/dL). It also maintained lipid profile and tests of liver and kidney functions within normal range as compared to diabetic control rats and almost at par with standard drug metformin. The oxidative stress induced decline in glutathione and catalase in liver and kidney tissues showed recovery nearly to normal level as a function of treatment. The GC–MS profile of the extract showed relatively high concentration of β-sitosterol which was characterized by different spectroscopic and chromatographic techniques. The result scientifically and comprehensively validate the reported use of roots of this indigenous plant against diabetes. A strong antioxidant activity of the ethanolic root extract suitably compliments the antidiabetic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ashok K, Lakshman K, Nandeesh R, Arun K, Manoj K, Kumar V. In vitro alpha amylase inhibition and in vivo antioxidant potential of Amaranthus spinosus in alloxan induced oxidative stress in diabetic rats. Saudi J Biol Sci. 2011;18:1–5.

    Article  Google Scholar 

  2. Fonseca VA. Clinical diabetes: translating research into practice. Philadelphia: Saunders - An Imprint of Elsevier; 2014.

    Google Scholar 

  3. Hiremath MB, Jali MV. Diabetes. Ind J Sci Technol. 2010;3(10):1106–8.

    Google Scholar 

  4. Olubomehin OO, Abo KA, Ajaiyeoba EO. Alpha amylase inhibitory activity of two Anthocleista species and in vivo rat model antidiabetic activities of Anthocleista djalonensis extracts and fractions. J Ethnopharmacol. 2013;146(3):811–4.

    Article  CAS  PubMed  Google Scholar 

  5. Hosakatte NM, Vijayalaxmi SD, Eun JL, Kee YP. Efficacy of ginseng adventitious root extract on hyperglycemia in streptozotocin induced diabetic rats. J Ethnopharmacol. 2014;153:917–21.

    Article  Google Scholar 

  6. Sujatha S, Anand S, Sangeetha KN, Shilpa K, Lakshmi J, Balakrishnan A, et al. Biological evaluation of (3β)-Stigmast-5-en-3-ol as potent antidiabetic agent in regulating glucose transport using in vitro model. Int J Diabetes Mellit. 2010;2(2):101–9.

    Article  CAS  Google Scholar 

  7. Ghazanfar K, Ganai BA, Akbar S, Mubashir K, Dar SA, Dar MY, et al. Antidiabetic activity of Artemisia amygdalina Decne in streptozotocin induced diabetic rats. Biomed Res Int. 2014;2014:185676. doi:10.1155/2014/185676.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chauhan P, Mahajan S, Kulshrestha A, Shrivastava S, Sharma B, Goswamy HM, et al. Bougainvillea spectabilis exhibits antihyperglycemic and antioxidant activities in experimental diabetes. J Evid Based Complement Altern Med. 2015;. doi:10.1177/2156587215595152.

    Google Scholar 

  9. Kedar P, Chakrabarti CH. Effects of bittergourd (Momordica charantia) seed and glibenclamide in streptozotocin induced diabetes mellitus. Ind J Exp Biol. 1982;20:232–5.

    CAS  Google Scholar 

  10. Kalpana R, Vijay KS, Parag JS, Prakash R, Zabeer A, Veena DS. In vitro and in vivo antiadipogenic, hypolipidemic and antidiabetic activity of Diospyros melanoxylon (Roxb). J Ethnopharmacol. 2014;155(2):1171–6.

    Article  Google Scholar 

  11. Kamboj VP. Herbal medicine. Curr Sci. 2000;78:35–9.

    Google Scholar 

  12. Srinivasan P, Subramaniyan V. Antidiabetic, hypolipidemic and histopathological analysis of Gymnema sylvestre (R. Br) leaves extract on streptozotocin induced diabetic rats. Biomed Prev Nutr. 2014;4(3):425–30.

    Article  Google Scholar 

  13. Rai PK, Jaiswal D, Rai DK, Sharma B, Watal G. Effect of water extract of Trichosanthes dioica fruits in streptozotocin induced diabetic rats. Indian J Clin Biochem. 2008;23(4):387–90.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Watal G, Dhar P, Srivastava SK, Sharma B. Herbal medicine as an alternative medicine for treating diabetes: the global burden. Evid Based Complement Altern Med. 2014;2014:596071. doi:10.1155/2014/596071.

    Article  Google Scholar 

  15. Bernfeld P. Amylase, α and β. In: Colowick SP, Kaplan NO, editors. Methods in enzymology. New York: Academic Press; 1995. p. 149–58.

    Google Scholar 

  16. Daksha G, Subraya K, Chandrashekher PG. In vitro antidiabetic activity of Pentacyclic triterpenoids and fatty acid ester from Bauhinia purpurea. Int J Pharm Pharm Sci. 2013;2:34–6.

    Google Scholar 

  17. Harish M, Faiyaz A, Asna U. In vitro hypoglycemic effects of Butea monosperma Lam. leaves and bark. J Food Sci Technol. 2014;51(2):308–14.

    Article  CAS  PubMed  Google Scholar 

  18. Mohammed SI, Chopda MZ, Patil RH, Vishwakarma KS, Maheshwari VL. In vivo antidiabetic and antioxidant activities of Coccinia grandis leaf extract against streptozotocin induced diabetes in experimental rats. Asian Pac J Trop Dis. 2016;6(4):298–304.

    Article  CAS  Google Scholar 

  19. Banskota AH, Nguyen NT, Tezuka Y, Nobukawa TKS. Hypoglycemic effects of the wood of Taxus yunnanensis on streptozotocin induced diabetic rats and its active components. Phytomedicine. 2006;13:109–14.

    Article  CAS  PubMed  Google Scholar 

  20. Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys. 1978;186(1):189–95.

    Article  CAS  PubMed  Google Scholar 

  21. Sumantha M, Ahmed R. Antihepatotoxic and antioxidant activity of root of Taraxacum officinale in CCl4-intoxicated rats. Pharmacogn Mag. 2010;4(16):188–94.

    Google Scholar 

  22. The organization of economic co-operation development (Jung), TG. The OECD guideline for testing of chemical: 425 Acute Oral Toxicity. OECD, Paris; 2010. p. 12–18.

  23. Manu AM, Kalia AN. Isolation and characterization of stigmasterol and β-sitosterol-D-glycoside from ethanolic extract of the stems of Salvadora persica linn. Int J Pharm Pharm Sci. 2013;5(1):245–9.

    Google Scholar 

  24. Dandekar R, Fegade B, Bhaskar VH. GC-MS analysis of phytoconstituents in alcohol extract of Epiphyllum oxypetalum leaves. J Pharmacogn Phytochem. 2015;4(1):149–54.

    Google Scholar 

  25. Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin induced experimental hyperglycemia. J Diabetes. 2011;3(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  26. Rajanandh MG, Kavitha J. Quantitative estimation of β-sitosterol, total phenolic and flavonoid compounds in the leaves of Moringa oleifera. Int J Pharm Tech Res. 2010;2(2):1409–14.

    CAS  Google Scholar 

  27. Dinesh MG, Rajasekaran S, Suneel R, Chandrasekaram K, Kalaivani R. Terminalia bellerica leaf extracts induce apoptosis in Hep G2 cells and regulates cell cycle progression by inducing G2/M cell cycle arrest. Indian J Res Pharm Biotech. 2014;2(1):2320–71.

    Google Scholar 

  28. Tiwari AK, Madhusudanarao J. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Curr Sci. 2002;83(1):30–8.

    CAS  Google Scholar 

  29. Jaiswal D, Rai PK, Mehta S, Chatterji S, Shukla S, Rai DK, et al. Role of Moringa oleifera in regulation of diabetes induced oxidative stress. Asian Pac J Trop Dis. 2013;6(6):426–32.

    Article  CAS  Google Scholar 

  30. Chen X, Jin J, Tang J, Wang Z, Wang J, Jin L, et al. Extraction, purification, characterization and hypoglycemic activity of a polysaccharide isolated from the root of Ophiopogon japonicus. Carbohydr Polym. 2011;83(2):749–54.

    Article  CAS  Google Scholar 

  31. Okokon JE, Antia BS, Udobang JA. Antidiabetic activities of ethanolic extract and fraction of Anthocleista djalonensis. Asian Pac J Trop Biomed. 2012;2(6):461–4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Uddin N, Hasan MR, Hossain MM, Sarker A, Hasan AN, Islam AM, et al. In vitro α-amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. Fruit. Asian Pac J Trop Biomed. 2014;4(6):473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pushparaj PN, Low HK, Manikandan J, Tan BKH, Tan CH. Antidiabetic effects of Cichorium intybus in streptozotocin induced diabetic rats. J Ethnopharmacol. 2007;111(2):430–4.

    Article  CAS  PubMed  Google Scholar 

  34. Rai PK, Jaiswal D, Mehta S, Rai DK, Sharma B, Watal G. Effect of Curcuma longa freeze dried rhizome powder with milk in STZ induced diabetic rats. Indian J Clin Biochem. 2010;25(2):175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Belce A, Uslu E, Kucur M, Umut M, Ipbuker A, Seymen HO. Evaluation of salivary sialic acid level and Cu–Zn superoxide dismutase activity in type I diabetes mellitus. Tohoku J Exp Med. 2000;192(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  36. Sridevi M, Chandramohan G, Pugalendi KV. Protective effect of Solanum surattense leaf extract on blood glucose, oxidative stress and hepatic marker enzymes in STZ-diabetic rats. Asian J Biochem. 2007;2:247–55.

    Article  Google Scholar 

  37. Rojo LE, Ribnicky D, Logendra S, Poulev A, Rojas-Silva P, Kuhn P, et al. In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chem. 2012;131(2):387–96.

    Article  CAS  PubMed  Google Scholar 

  38. Mondal A, Tapan KM, Dilipkumar P. Hypoglycaemic effect of Melothria heterophylla in streptozotocin induced diabetic rats. Pharm Biol. 2012;50(9):1151–6.

    Article  PubMed  Google Scholar 

  39. Saklani A, Kutty SK. Plant derived compounds in clinical trials. Drug Discov Today. 2008;13(3):161–71.

    Article  CAS  PubMed  Google Scholar 

  40. Paramanantham M, Murugesan A. GC-MS analysis of Holarrhena antidysentrica Wall flower. Int J Sci Eng Technol Res. 2014;3(3):631–5.

    Google Scholar 

  41. Sermakkani M, Thangapandian V. GC-MS analysis of Cassia italica leaf methanol extract. Asian J Pharm Clin Res. 2012;5(2):90–4.

    CAS  Google Scholar 

  42. Santhosh KS, Samydurai P, Ramakrishnan R, Nagarajan N. Gas chromatography and mass spectrometry analysis of bioactive constituents of Adiantum capillus-veneris. Int J Pharm Pharm Sci. 2014;6(4):60–3.

    Google Scholar 

  43. Kumaradevan G, Damodaran R, Mani P, Dineshkumar G, Jayaseelan T. Phytochemical screening and GC-MS analysis of bioactive components of ethanol leaves extract of Clerodendrum phlomidis. Am J Biol Pharm Res. 2015;2(3):142–8.

    Google Scholar 

Download references

Acknowledgments

One of the authors (S.I.M) acknowledges the fellowship from University Grants Commission, New Delhi under its Maulana Azad National Fellowship for Minorities scheme (F1-17.7/2012-13/MANF-2012-13-MUS-MAH-13068/[SA-III/Website]). Financial support from University Grants Commission, New Delhi and Department of Science and Technology, New Delhi for strengthening the research facilities in the School under the SAP-DRS (F.4-23/2015/DRS-II [SAP II]) and FIST (SR/FST/LSI-433/2010) programs, respectively are gratefully acknowledged. Authors also acknowledge Sophisticated Analytical Instrumentation Facility, Chandigarh and Moolji Jaitha College, Jalgaon for providing LC–MS instrumentation and animal house facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Laxminarayan Maheshwari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. The study was approved by the Institutional Animal Ethics Committee (IAEC/16/CPCSEA/MJC/14-15) and was carried out in accordance with the current guidelines set by Organization for Economic Co-operation and Development (OECD), received from Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Social Justice and Empowerment, Government of India for the care of laboratory animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, S.I., Salunkhe, N.S., Vishwakarma, K.S. et al. Experimental Validation of Antidiabetic Potential of Cayratia trifolia (L.) Domin: An Indigenous Medicinal Plant. Ind J Clin Biochem 32, 153–162 (2017). https://doi.org/10.1007/s12291-016-0598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-016-0598-1

Keywords

Navigation