Indian Journal of Clinical Biochemistry

, Volume 31, Issue 4, pp 402–413 | Cite as

Methylenetetrahydrofolate Reductase C677T Polymorphism and Recurrent Pregnancy Loss Risk in Asian Population: A Meta-analysis

  • Vandana RaiEmail author
Original Article


The C677T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) gene was implicated to be associated with thrombophilia due to its role in catalyzing the formation of 5-methylenetetrahydrofolate, a co-substrate for the conversion of homocysteine to methionine. Several case–control studies were investigated MTHFR C677T polymorphism as risk for recurrent pregnancy loss (RPL). These studies rendered contradictory results, some indicating that the polymorphism is associated with the risk of RPL whereas others concluded there is no association. To shed light on these inconclusive findings, a meta-analysis of all available studies published from Asian population relating the C677T polymorphism to the risk of RPL was conducted. The following electronic databases were searched without language restrictions: PubMed, Google Scholars, Elsevier and Springer Link up to December, 2015. Meta-analysis was performed using MetaAnalyst and Mix version 1.7. Meta-analysis results suggested that MTHFR C677T polymorphism contributed to the increased RPL risk in Asian population using all five genetic models (for T vs. C: OR 1.35, 95 % CI 1.09–1.68, p = 0.009; for TT + CT vs. CC: OR 1.44, 95 % CI 1.14–1.82, p = 0.006; for CT vs. CC: OR 1.39, 95 % CI 1.07–1.8, p = 0.01; for TT vs. CC: OR 1.79, 95 % CI, p = 0.007; for TT vs. CT + CC: OR 1.61, 95 % CI 1.02–2.56, p = 0.04). In conclusion, this meta-analysis demonstrates a strong association between the MTHFR C677T variant and RPL in Asian population and raising the importance of the use of folate in its treatment and prevention.


Recurrent pregnancy loss Thrombophilic gene MTHFR C677T Meta-analysis Folate 



The author is highly grateful to Leon Bax (Chief Scientific Officer at BiostatXL, UMC Utrecht) for his valuable suggestions, which help her in statistical analysis.

Compliance with Ethical Standards

Conflict of interest



  1. 1.
    Stirrat GM. Recurrent miscarriage: definition and epidemiology. Lancet. 1990;336:673–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Berry CW, Bramabati B, Eskes TKAB, Exalto N, Fox H, Geraedts JP, et al. The Euro-Team Early Pregnancy (ETEP) protocol for recurrent miscarriage. Hum Reprod. 1995;10:1516–20.CrossRefPubMedGoogle Scholar
  3. 3.
    Bricker L, Farquharson RG. Types of pregnancy loss in recurrent miscarriage: implications for research and clinical practice. Hum Reprod. 2002;17:1345–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Cook CL, Pridham DD. Recurrent pregnancy loss. Curr Opin Obstet Gynecol. 1995;7:357–66.CrossRefPubMedGoogle Scholar
  5. 5.
    Younis JS, Ohel G, Brenner B, Ben-Ami M. Familial thrombophilia—the scientific rationale for thrombophylaxis in recurrent pregnancy loss? Hum Reprod. 1997;12:1389–90.CrossRefPubMedGoogle Scholar
  6. 6.
    Brigham S, Conlon C, Farquharson RG. A longitudinal study of pregnancy outcome following idiopathic recurrent miscarriage. Hum Reprod. 1999;14:2868–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Andersen AMN, Wohlfahrt J, Christens P, Melbye M. Maternal age and fetal loss: population based register linkage study. BMJ. 2000;320:1708–12.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Cramer DW, Wise LA. The epidemiology of recurrent pregnancy loss. Semin Reprod Med. 2000;18:331–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Fenster L, Eskenazi B, Windham GC, Swan SH. Caffeine consumption during pregnancy and spontaneous abortion. Epidemiology. 1991;2:168–74.CrossRefPubMedGoogle Scholar
  10. 10.
    Parazzini F, Bocciolone L, Fedele L, Negri E, La Vecchia C, Acaia B. Risk factors for spontaneous abortion. Int J Epidemiol. 1991;20:157–61.CrossRefPubMedGoogle Scholar
  11. 11.
    Nair RR, Khanna A, Singh K. MTHFR C677T polymorphism and recurrent early pregnancy loss risk in North Indian population. Reprod Sci. 2012;19:210–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Regan L, Rai R. Thrombophilia and pregnancy loss. J Reprod Immunol. 2002;55:163–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Kupferminc M, Eldor A, Steinman N, Many A, Bar-Am A, Jaffa A, et al. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N Engl J Med. 1999;340:9–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Kupferminc M, Fait G, Many A, Gordon D, Eldor A, Lessing J. Severe preeclampsia and high frequency of genetic thrombophilic mutations. Obstet Gynecol. 2000;96:45–9.PubMedGoogle Scholar
  15. 15.
    Brenner B, Sarig G, Weiner Z, Younis J, Blumenfeld Z, Lanir N. Thrombophilic polymorphisms are common in women with fetal loss without apparent cause. Thromb Haemost. 1999;82:6–9.PubMedGoogle Scholar
  16. 16.
    Dissanayake VHW, Sirisena ND, Weerasekera LY, Gammulla G, Seneviratne HR, Jayasekara RW. Candidate gene study of genetic thrombophilic polymorphisms in pre-eclampsia and recurrent pregnancy loss in Sinhalese women. J Obstet Gynaecol Res. 2012;38:1168–76.CrossRefPubMedGoogle Scholar
  17. 17.
    Jilma B, Kamath S, Lip GY. ABC of antithrombotic therapy: antithrombotic therapy in special circumstances: II—in children, thrombophilia, and miscellaneous conditions. BMJ. 2003;326:93–6.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wu X, Zhao L, Zhu H, He D, Tang W, Luo Y. Association between the MTHFR C677T polymorphism and recurrent pregnancy loss: a meta-analysis. Genet Test Mol Biomarker. 2012;16:806–11.CrossRefGoogle Scholar
  19. 19.
    Arruda VR, von Zuben PM, Chiaparini LC, Annichino-Bizzacchi JM, Costa FF. The mutation Ala6774Val in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis. Thromb Haemost. 1997;77:818–21.PubMedGoogle Scholar
  20. 20.
    Boers GH. Hyperhomocysteinemia as a risk factor for arterial and venous disease: a review of evidence and relevance. Thromb Haemost. 1997;78:520–2.PubMedGoogle Scholar
  21. 21.
    Vettriselvi V, Vijayalakshmi K, Paul SF, Venkatachalam P. ACE and MTHFR gene polymorphisms in unexplained recurrent pregnancy loss. J Obstet Gynaecol Res. 2008;34:301–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Jacques PF, Bostom AG, Williams RR, Ellison RC, Eckfeldt JH, Rosenberg IH, et al. Relation between folate status, a common mutation in methylene tetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation. 1996;93:7–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Murphy RP, Donoghue C, Nallen RJ, D’Mello M, Regan C, et al. Prospective evaluation of the risk conferred by factor V Leiden and thermolabile methylenetetrahydrofolate reductase polymorphisms in pregnancy. Arterioscler Thromb Vasc Biol. 2000;20:266–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Morita H, Taguchi J, Kurihara H, Kitaoka M, Kaneda H, Kurihara Y, et al. Genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) as a risk factor for coronary artery disease. Circulation. 1997;95:2032–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Legnani C, Palareti G, Grauso F, Sassi S, Grossi G, Piazzi S, et al. Hyperhomocyst(e)inemia and a common methylenetetrahydrofolate reductase mutation (Ala223Val MTHFR) in patients with inherited thrombophilic coagulation defects. Arterioscler Thromb Vasc Biol. 1997;17:2924–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Nelen WL, Steegers EA, Eskes TK, Blom HJ. Genetic risk factor for unexplained recurrent early pregnancy loss. Lancet. 1997;350:861.CrossRefPubMedGoogle Scholar
  27. 27.
    Ozdemir O, Yenicesu GI, Silan F, Keoksal B, Atik S, Ozen F, et al. Recurrent pregnancy loss and its relation to combined parental thrombophilic gene mutations. Genet Test Mol Biomarkers. 2012;16:279–86.CrossRefPubMedGoogle Scholar
  28. 28.
    Zonouzi P, Chaparzadeh N, Estiar MA, Sadaghiani MM, Farzadi L, Ghasemzadeh A et al. Methylenetetrahydrofolate reductase C677T and A1298C mutations in women with recurrent spontaneous abortions in the Northwest of Iran. ISRN Obst Gynec. 2012; Article ID 945486, 6.Google Scholar
  29. 29.
    Kaur L, Puri M, Kaushik S, Sachdeva MP, Trivedi SS, Saraswathy KN. Genetic thromobophilia in pregnancy: a case–control study among North Indian women. J Thromb Thrombolysis. 2013;35:250–6.PubMedGoogle Scholar
  30. 30.
    Parveen F, Tuteja M, Agrawal S. Polymorphisms in MTHFR, MTHFD, and PAI-1 and recurrent miscarriage among North Indian women. Arch Gynecol Obstet. 2013;288:1171–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1954;22:719–48.Google Scholar
  32. 32.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRefPubMedGoogle Scholar
  33. 33.
    Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med. 1997;127:820–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMedGoogle Scholar
  35. 35.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1999;315:629–34.CrossRefGoogle Scholar
  36. 36.
    Bax L, Yu LM, Ikeda N, Tsuruta H, Moons KG. Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol. 2006;6:50–3.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lissak A, Sharon A, Fruchter O, Kassel A, Sanderovitz J, Abramovici H. Polymorphism for mutation of cytosine to thymine at location 677 in the methylenetetrahydrofolate reductase gene is associated with recurrent early fetal loss. Am J Obstet Gynecol. 1999;181:126–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang YW, Li F, Li YP. The study on the relationship between the methylenetetrahydofolaye reductase 667C–>T mutation and unexpected recurrent pregnancy loss. Zhongguo Shi Yong Fu Ke Yu Chan Ke Za Zhi. 2002;18:291–3.Google Scholar
  39. 39.
    Wang XP, Lin QD, Ma ZW. C677T and A1298C mutation of the methylenetetrahydrofolate reductase gene in unexplained recurrent spontaneous abortion. Zhonghua Fu Chan Ke Za Zhi. 2004;39:238–41.PubMedGoogle Scholar
  40. 40.
    Wang X, Ma Z, Lin Q. Inherited thrombophilia in recurrent spontaneous abortion among Chinese women. Int J Gynec Obst. 2006;92:264–5.CrossRefGoogle Scholar
  41. 41.
    Kumar KS, Govindaiah V, Naushad SE, Devi RR, Jyothy A. Plasma homocysteine levels correlated to interactions between folate status and methylene tetrahydrofolate reductase gene mutation in women with unexplained recurrent pregnancy loss. J Obstet Gynaecol. 2003;23:55–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Li X, Zhang Y, Xu X, Jinag S. Study on the relationship of MTHFR polymorphisms with unexplained recurrent spontaneous abortion. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2004;21:39–42.PubMedGoogle Scholar
  43. 43.
    Makino A, Nakanishi T, Sugiura-Ogasawara M, Ozaki Y, Suzumori N, Suzumori K. No association of C677T methylenetetrahydrofolate reductase and an endothelial nitric oxide synthase polymorphism with recurrent pregnancy loss. Am J Reprod Immunol. 2004;52:60–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Guan LX, Du XY, Wang JX, Gao L, Wang RL, Li HB, et al. Association of genetic polymorphisms in plasminogen activator inhibitor-1 gene and 5,10-methylenetetrahydrofolate reductase gene with recurrent early spontaneous abortion. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005;22:330–3.PubMedGoogle Scholar
  45. 45.
    Kobashi G, Kato EH, Morikawa M, Shimada S, Ohta K, Fujimoto S, et al. MTHFR C677T polymorphism and factor V Leiden mutation are not associated with recurrent spontaneous abortion of unexplained etiology in Japanese women. Semin Thromb Hemost. 2005;31:266–71.CrossRefPubMedGoogle Scholar
  46. 46.
    Song LY. Relationship between genetic polymorphism of homocysteine metabolism enzyme and unexplained repeated spontaneous abortion. Zhonghua Wei Chan Yi Xue Za Zhi. 2005;8:160–4.Google Scholar
  47. 47.
    Mitraoui N, Zammiti W, Ghazouani L, Jmili Braham N, Saidi S, Finan RR, et al. Methylenetetrahydrofolate reductase C677T and A1298C polymorphism and changes in homocysteine concentrations in women with idiopathic recurrent pregnancy loss. Reproduction. 2006;131:395–401.CrossRefGoogle Scholar
  48. 48.
    Govindaiah V, Naushad SM, Prabhakara K, Krishna PC. Radha Rama Devi A. Association of parental hyperhomocysteinemia and C677T Methylene tetrahydrofolate reductase (MTHFR) polymorphism with recurrent pregnancy loss. Clin Biochem. 2009;42:380–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Mukhopadhyay R, Saraswathy KN, Ghosh PK. MTHFR C677T and factor V Leiden in recurrent pregnancy loss: a study among an endogamous group in North India. Genet Test Mol Biomarkers. 2009;13:861–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Abu-Asab NS, Ayesh SK, Ateeq RO, Nassar SM, EL-Sharif WA. Association of Inherited thrombophilia with recurrent pregnancy loss in Palestinian women. Obstet Gynecol International. 2011; ID 689684.Google Scholar
  51. 51.
    Jeddi-Tehrani M, Torabi R, Mohammadzadeh A, Arefi S, Keramatipour M, Zeraati H, et al. Investigating association of three polymorphisms of coagulation factor XIII and recurrent pregnancy loss. Am J Reprod Immunol. 2010;64:212–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Settin A, Elshazli R, Salama A, ElBaz R. Methylenetetrahydrofolate reductase gene polymorphisms in Egyptian women with unexplained recurrent pregnancy loss. Genet Test Mol Biomarkers. 2011;15:887–92.CrossRefPubMedGoogle Scholar
  53. 53.
    Torabi R, Zarei S, Zeraati H, Zarnani AH, Akhondi MM, Hadavi R, et al. Combination of thrombophilic gene polymorphisms as a cause of increased the risk of recurrent pregnancy loss. J Reprod Infertil. 2012;13(2):89–94.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Cao Y, Zhang Z, Zheng Y, Yuan W, Wang J, Liang H, Chen J, Du J, Shen Y. The association of idiopathic recurrent early pregnancy loss with polymorphisms in folic acid metabolism-related genes. Genes Nutr. 2014;9:402–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yousefian E, Kardi MT, Allahveisi A. Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphism in Iranian Women With Idiopathic Recurrent Pregnancy Losses. Iran Red Crescent Med J. 2014;16(7):e16763.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Farahmand K, Totonchi M, Hashemi M, Sabet FR, Kalantari H, Gourabi H, Meybodi AM. Thrombophilic genes alterations as risk factor for recurrent pregnancy loss. J Matern Fetal Neonatal Med. 2015. doi: 10.3109/14767058.2015.1044431.PubMedGoogle Scholar
  57. 57.
    Vanilla S, Dayanand CD, Kotur PF, Kutty AM, Vegi PK. Evidence of paternal N5, N10—methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism in couples with recurrent spontaneous abortions (RSAs) in Kolar district—a south west of India. J Clin Diagn Res. 2015;9(2):15–8.Google Scholar
  58. 58.
    Trabetti E. Homocysteine, MTHFR gene polymorphisms, and cardio-cerebrovascular risk. J Appl Genet. 2008;49:267–82.CrossRefPubMedGoogle Scholar
  59. 59.
    Nelen WL, Bulten J, Steegers EA, Blom HJ, Hanselaar AG, Eskes TK. Maternal homocysteine and chorionic vascularization in recurrent early pregnancy loss. Hum Reprod. 2000;15:954–60.CrossRefPubMedGoogle Scholar
  60. 60.
    Nelen WL, Blom HJ, Steegers EA, den Heijer M, Eskes TK. Hyperhomocysteinemia and recurrent early pregnancy loss: a meta-analysis. Fertil Steril. 2000;74:1196–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Nelen WL, Blom HJ, Steegers EA, den Heijer M, Thomas CM. Eskes TK Homocysteine and folate levels as risk factors for recurrent early pregnancy loss. Obstet Gynaecol. 2000;95:519–24.Google Scholar
  62. 62.
    Meegdes BH, Ingenhoes R, Peeters LL, Exalto N. Early pregnancy wastage: relationship between chorionic vascularization and embryonic development. Fertil Steril. 1988;49:216–20.CrossRefPubMedGoogle Scholar
  63. 63.
    Golbahar J, Aminzadeh MA, Sharifkazemi MB, Rezaian GR. Association of red blood cell 5-methyltetrahydrofolate and severity of coronary artery disease: a cross-sectional study from Shiraz, southern Iran. Heart Vessels. 2005;20:203–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Molen E, Arends G, Nelen W, Put N, Heil S, Eskes T, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene as new risk factor for placental vasculopathy. Am J Obstet Gynecol. 2000;182:1258–63.CrossRefPubMedGoogle Scholar
  65. 65.
    Munafo MR, Flint J. Meta-analysis of genetic association studies. Trends Genet. 2004;20:439–44.CrossRefPubMedGoogle Scholar
  66. 66.
    Rai V, Yadav U, Kumar P, Yadav SK, Mishra OP. Maternal methylenetetrahydrofolate reductase C677T polymorphism and down syndrome risk: a meta-analysis from 34 studies. PLoS One. 2014;9:e108552.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yadav U, Kumar P, Yadav SK, Mishra OP, Rai V. Polymorphisms in folate metabolism genes as maternal risk factor for neural tube defects: an updated meta-analysis. Metab Brain Dis. 2015;30(1):7–24.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhao M, Ren Y, Shen L, Zhang Y, Zhou B. Association between MTHFR C677T and A1298C polymorphisms and NSCL/P risk in Asians: a meta-analysis. PLoS One. 2014;9:e88242.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wang W, Wang Y, Gong F, Zhu W, Fu S. MTHFR C677T polymorphism and risk of congenital heart defects: evidence from 29 case–control and TDT studies. PLoS One. 2013;8:e58041.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yadav S, Hasan N, Marjot T, Khan MS, Prasad K, Bentley P, et al. Detailed analysis of gene polymorphisms associated with ischemic stroke in south Asians. PLoS One. 2013;8(3):e57305.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhu B, Wu X, Zhi X, Liu L, Zheng Q, Sun G. Methylenetetrahydrofolate reductase C677T polymorphism and type 2 diabetes mellitus in Chinese population: a meta-analysis of 29 case–control studies. PLoS One. 2014;9(7):e102443.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Zhang MY, Miaoa L, Li YS, Hub GY. Meta-analysis of the methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to Alzheimer’s disease. Neurosci Res. 2010;68:142–50.CrossRefPubMedGoogle Scholar
  73. 73.
    Hu CY, Qian ZZ, Gong FF, Lu SS, Feng F, Wu YL, et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphism susceptibility to schizophrenia and bipolar disorder: an updated meta-analysis. J Neural Transm. 2014;122(2):307–20.CrossRefPubMedGoogle Scholar
  74. 74.
    Rai V. The methylenetetrahydrofolate reductase C677T polymorphism and breast cancer risk in Asian populations. Asian Pac J Cancer Prev. 2014;15:5853–60.CrossRefPubMedGoogle Scholar
  75. 75.
    Ren A, Wang J. Methylenetetrahydrofolate reductase C677T polymorphism and the risk of unexplained recurrent pregnancy loss: a meta-analysis. Fertil Steril. 2006;86(6):1716–22.CrossRefPubMedGoogle Scholar
  76. 76.
    Cao Y, Zhang Z, Zheng Y, Yuan W, Wang J, Liang H, et al. The association of idiopathic recurrent early pregnancy loss with polymorphisms in folic acid metabolism-related genes. Genes Nutr. 2014;9(3):402.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Zhang P, Gao X, Zhang Y, Hu Y, Ma H, Wang W, et al. Association between MTHFR C677T polymorphism and venous thromboembolism risk in the Chinese population: a meta-analysis of 24 case–control studies. Angiology. 2014;66(5):422–32.CrossRefPubMedGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2016

Authors and Affiliations

  1. 1.Human Molecular Genetics Laboratory, Department of BiotechnologyVBS Purvanchal UniversityJaunpurIndia

Personalised recommendations