Skip to main content
Log in

Evaluation of Surfactants-Assisted Folic Acid-Loaded Pectin Submicrospheres: Characterization and Hemocompatibility Assay

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Folic acid is used for preventing and treating multiple diseases and disorders, administered in the form of oral supplements. The present research work was aimed to study the influence of two non-ionic surfactants Poloxamer and Tween 80 (Polysorbate 80) on pectin submicrospheres formulations. Typical natural polymer pectin was used to encapsulate folic acid by cross linking method. The resultant submicrospheres contributed to improve the aqueous solubility to enhance the bioavailability of folic acid. During investigation, it was observed that pectin polymers influenced kinetics of the rate of reaction more intensively than the surfactants. The physical phenomenon caused the change in their size, shape and chemistry of pectin polymers transforming into submicrospheres in aqueous condition. The characteristic differences of submicrospheres were assessed by scanning electron microscopy, differential scanning calorimetry and Fourier-transform infrared spectroscopy. The average diameters of the submicrospheres ranged between 250 and 500 nm. The encapsulation efficiency of submicrospheres ranged between 80 and 96 %. The characteristic swelling behavior of lyophilized submicrospheres was influenced by the ratio of pectin polymers and folic acid used in the formulations. The submicrospheres systems exhibited controlled release of folic acid due to the pH-dependent solubility of pectin polymers in aqueous medium. The submicrospheres showed good haemocompatibility suggesting them to be promising candidates for oral delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffbrand AV, Weir DG. The history of folic acid. Br J Haematol. 2001;113:579–89.

    Article  CAS  PubMed  Google Scholar 

  2. Bailey SW, Ayling JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. In: Proceedings of the National Academy of Sciences of the United States of America; 2009. p. 15424–29.

  3. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Controlled Release. 2004;96:273–83.

    Article  CAS  Google Scholar 

  4. Stevanovic Magdalena, Radulovic Aleksandra, Jordovic Branka, Uskokovic Dragan. Poly(dl-lactide-co-glycolide) nanospheres for the sustained release of folic acid. J Biomed Nanotechnol. 2008;4:349–58.

    Article  CAS  Google Scholar 

  5. Shaw GM, Schaffer D, Velie EM, Morland K, Harris JA. Periconceptional vitamin use, dietary folate and the occurrence of neural tube defects. Epidemiology. 1995;6:219–26.

    Article  CAS  PubMed  Google Scholar 

  6. Goh YI, Koren G. Folic acid in pregnancy and fetal outcomes. J Obstet Gynaecol. 2008;28:3–13.

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Miss Mdel R, Perez-Mutul J, Lopez-Canul B, et al. Folate, homocysteine, interleukin-6, and tumor necrosis factor alfa levels, but not the methylenetetrahydrofolate reductase C677T polymorphism, are risk factors for schizophrenia. J Psychiatr Res. 2010;44:441–6.

    Article  PubMed  Google Scholar 

  8. Kanthamneni N, Prabhu S. Formulation development of targeted nanoparticle-based drug delivery systems for the chemoprevention of colon cancer. AAPS annual meeting exposition; 2006.

  9. Vollset SE, Clarke R, Lewington S, Ebbing M, Halsey J, Lonn E, Armitage J, Manson JE, Hankey GJ, Spence JD, Galan P, Bønaa KH, Jamison R, Gaziano JM, Guarino P, Baron JA, Logan RF, Giovannucci EL, den Heijer M, Ueland PM, Bennett D, Collins R, Peto R. Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50 000 individuals. Lancet. 2013;381:1029–36.

    Article  CAS  PubMed  Google Scholar 

  10. Weinstein SJ, Hartman TJ, Stolzenberg-Solomon R, et al. Null association between prostate cancer and serum folate, vitamin B(6), vitamin B(12) and homocysteine. Cancer Epidemiol Biomarkers Prev. 2003;12:1271–2.

    CAS  PubMed  Google Scholar 

  11. Kafrissen ME, Oakley G. Pharmaceutical methods of delivering folic acid. US Patent 6 190 693. 2001.

  12. Antony AC. The biological chemistry of folate receptors. Blood. 1992;79:2807–20.

    CAS  PubMed  Google Scholar 

  13. Chaudhary A, Nagaich U, Gulati N, Sharma VK, Khosa RL. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: a recent review. J Adv Pharm Educ Res. 2012;2:32–67.

    Google Scholar 

  14. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56:1649–59.

    Article  CAS  PubMed  Google Scholar 

  15. Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, Langer RS, Farokhzad OC. Targeted nanoparticles for cancer therapy. Nano Today. 2007;2:14–21.

    Article  Google Scholar 

  16. Pawar AP, Gadhe AR, Venkatachalam P, Sher P, Mahadik KR. Effect of core and surface cross-linking on the entrapment of metronidazole in pectin beads. Acta Pharm. 2008;58:78–85.

    Article  PubMed  Google Scholar 

  17. Sharma HK, Sarangi B, Pradhan SP. Preparation and in vitro evaluation of mucoadhesive microbeads containing timolol maleate using mucoadhesive substances of Dilleniaindica L. Arch Pharm Sci Res. 2009;1:181–8.

    CAS  Google Scholar 

  18. Fattal E, Honnas H, Andremont A, Bourgeois S. Polysaccharide beads for colon delivery of antibiotic degrading enzymes. In: 15th international symposium on MICROENCAPSULATION, Parma, Italy; 2005. p. 18–21.

  19. Goudanavar PS, Bagali RS, Chandrashekhara S, Patil SM. Design and characterization of diclofenac sodium microbeads by ionotropic gelation technique. Int J Pharma Bio Sci. 2010;2:1–10.

    Article  Google Scholar 

  20. Yamada H. Contribution of pectins on health care. In: Visser J, Voragen AGJ, editors. Pectins and pectinases. Amsterdam: Elsevier; 1996. p. 173–90.

    Chapter  Google Scholar 

  21. Behall K, Reiser S. Effects of pectin on human metabolism. In: Fishman ML, Ren JJ, editors. Chemistry and functions of pectins. Washington, DC: American Chemical Society; 1986. p. 248–65.

    Chapter  Google Scholar 

  22. Olano-Martin E, Rimbach GH, Gibson GR, Rastall RA. Pectin and pectic-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Res. 2003;23:341–6.

    CAS  PubMed  Google Scholar 

  23. Willats WGT, Knox JP, Mikkelsen JD. Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol. 2006;17:97–104.

    Article  CAS  Google Scholar 

  24. Sriamornsak P, Konthong S, Burapapadh K, Sungthongjeen S. Drug-loaded pectin microparticles prepared by emulsion-solvent evaporation. Adv Mater Res. 2012;506:282–5.

    Article  CAS  Google Scholar 

  25. Burapapadh K, Kumpugdee-Vollrath M, Chantasart D, Sriamornsak P. Fabrication of pectin-based nanoemulsions loaded with itraconazole for pharmaceutical application. Carbohydr Polym. 2010;82:384–93.

    Article  CAS  Google Scholar 

  26. Rubinstein I, et al. Effect of mouthpiece, nose clips, and head position on airway area measured by acoustic reflections. J Appl Physiol. 1987;63:1469–74.

    CAS  PubMed  Google Scholar 

  27. Ashford M, et al. Studies on pectin formulations for colonic drug delivery. J Controlled Release. 1994;30:225–32.

    Article  CAS  Google Scholar 

  28. Rolin C. Pectin. In: Whistler RL, Bemiller JN, editors. Industrial gums: polysaccharides and their derivatives. 3rd ed. New York: Academic Press; 1993. p. 257–93.

    Chapter  Google Scholar 

  29. Sriamornsak P. Effect of calcium concentration, hardening agent and drying condition on release characteristics of oral proteins from calcium pectinate gel beads. Eur J Pharm Sci. 1999;8:221–7.

    Article  CAS  PubMed  Google Scholar 

  30. Kim TH, Park YH, Kim KJ, Cho CS. Release of albumin from chitosan-coated pectin beads in vitro. Int J Pharm. 2003;250:371–83.

    Article  CAS  PubMed  Google Scholar 

  31. Atyabi F, Inanloo K, Dinarvand R. Bovine serum albumin loaded pectinate beads as colonic peptide delivery system: preparation and in vitro characterization. Drug Deliv. 2005;12:367–75.

    Article  CAS  PubMed  Google Scholar 

  32. Bourgeois S, Laham A, Besnard M, Andremont A, Fattal E. In vitro and in vivo evaluation of pectin beads for the colon delivery of beta-lactamases. J Drug Target. 2005;13:277–84.

    Article  CAS  PubMed  Google Scholar 

  33. Bourgeois S, Gernet M, Pradeau D, Andremont A, Fattal E. Evaluation of critical formulation parameters influencing the bioactivity of beta-lactamases entrapped in pectin beads. Int J Pharm. 2006;324:2–9.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng K, Lim L-Y. Insulin-loaded calcium pectinate nanoparticles: effects of pectin molecular weight and formulation pH. Drug Dev Ind Pharm. 2004;30:359–67.

    Article  CAS  PubMed  Google Scholar 

  35. Ravikumara NR, Madhusudhan B. Chitosan nanoparticles for tamoxifen delivery and cytotoxicity to MCF-7 and Vero cells. Pure Appl Chem. 2011;83:2027–40.

    Article  CAS  Google Scholar 

  36. Ravikumara NR, Madhusudhan B. Evaluation of anticancer efficacy of daidzein loaded poly(d,l) lactic acid nanoparticles. J Bionanosci. 2011;5:122–9.

    Article  Google Scholar 

  37. Ravikumara NR, Madhusudhan B, Nagaraj TS, Hiremat SR, Raina G. Preparation and evaluation of nimesulide-loaded ethyl cellulose and methylcellulose nanoparticles and microparticles for oral delivery. J Biomater Appl. 2009;24:47–64.

    Article  CAS  PubMed  Google Scholar 

  38. Jenquin MR, McGinity JW. Characterization of acrylic resin matrix films and mechanisms of drug-polymer interactions. Int J Pharm. 1994;101:23–34.

    Article  CAS  Google Scholar 

  39. Surolia R, Pachauri M, Ghosh PC. Preparation and characterization of monensin loaded PLGA nanoparticles. In vitro anti-malarial activity against plasmodium falciparum. J Biomed Nanotechnol. 2012;8:172–81.

    Article  CAS  PubMed  Google Scholar 

  40. Mainardes RM, Gremiao MPD, Evangelista RC. Thermoanalytical study of praziquantel-loaded PLGA nanoparticles. Braz J Pharm Sci. 2006;42:523–30.

    CAS  Google Scholar 

  41. Matias R, Ribeiro PRS, Sarraguça MC, Lopes JA. A UV spectrophotometric method for the determination of folic acid in pharmaceutical tablets and dissolution tests. Anal Methods. 2014;6:3065–307.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the Kuvempu University, Davangere University and Dr. V. Rajendran, Professor, KSRCT, Thiruchengode, TN., for providing laboratory facilities and support. Thanks are due to Dr. G. U Kulkarni, JNCASR, Jakkur, Bangalore, for help with Scanning Electron Microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basavaraj Madhusudhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varuna Kumara, J.B., Ravikumara, N.R. & Madhusudhan, B. Evaluation of Surfactants-Assisted Folic Acid-Loaded Pectin Submicrospheres: Characterization and Hemocompatibility Assay. Ind J Clin Biochem 31, 390–401 (2016). https://doi.org/10.1007/s12291-016-0549-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-016-0549-x

Keywords

Navigation