Skip to main content
Log in

Suppression of Type-II Diabetes with Dyslipidemia and Nephropathy by Peels of Musa cavendish Fruit

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Musa cavendish, peels has local and traditional use to promote wound healing, hyperglycemia, ulceration etc. The present work investigated the lipid lowering; nephroprotective and glucose lowering properties of ethanolic extract of peels of Musa cavendish (EMC) in alloxan-induced diabetic rats. The EMC 250, 500 and 1000 mg/kg/day and the vehicle were administered orally to alloxan-induced diabetic rats (n = 6) for 3 weeks. Changes in plasma glucose, lipid profile along with kidney function before and after treatment with EMC were recorded. The ethanolic extract of peels of Musa cavendish reduced blood glucose, serum triglyceride, cholesterol, LDL cholesterol and creatinine levels and improvement in body weight, liver glycogen, serum HDL cholesterol, serum albumin and total protein level when compared with untreated rats. Musa cavendish has lipid lowering, nephroprotective and antidiabetic property by regulating glucose uptake in the liver and muscles by restoring the intracellular energy balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fradkin JE. Confronting the urgent challenge of diabetes: an overview. Health Aff. 2012;31:12–9.

    Article  Google Scholar 

  2. Watal G, Dhar P, Srivastava SK, Sharma B. Herbal medicine as an alternative medicine for treating diabetes: the global burden. J Evid Based Complement Altern Med. 2014;2014:1–2.

    Article  Google Scholar 

  3. Duckworth WC. Hyperglycemia and cardiovascular disease. Curr Atheroscler Rep. 2001;3:383–91.

    Article  CAS  PubMed  Google Scholar 

  4. Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003;46:733–49.

    Article  PubMed  Google Scholar 

  5. Krauss RM, Siri PW. Metabolic abnormalities: triglyceride and low-density lipoprotein. Endocrinol Metab Clin N Am. 2004;33:405–15.

    Article  CAS  Google Scholar 

  6. Del Pilar Solano M, Goldberg RB. Management of diabetic dyslipidemia. Endocrinol Metab Clin N Am. 2005;34:1–25.

    Article  Google Scholar 

  7. Chahil TJ, Ginsberg HN. Diabetic dyslipidemia. Endocrinol Metab Clin N Am. 2006;35:491–510.

    Article  CAS  Google Scholar 

  8. Adiels M, Westerbacka J, Soro-Paavonen A, Häkkinen AM, Vehkavaara S, Caslake MJ, Packard C, Olofsson SO, Yki-Järvinen H, Taskinen MR, Borén J. Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia. 2007;50:2356–65.

    Article  CAS  PubMed  Google Scholar 

  9. Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nature Clin Pract Endocrinol Metab. 2009;5:150–9.

    Article  CAS  Google Scholar 

  10. Ozturk Y, Altan VM, Ari N. Diabetic complications in experimental models. Turk J Med Sci. 1998;22:331–41.

    Google Scholar 

  11. Rasch R, Mogensen CI. Urinary excretion of albumin and total protein in normal and streptozotocin diabetic rats. Acta Endocrinol. 1980;95:376–81.

    CAS  PubMed  Google Scholar 

  12. Vasconcelos CFB, Maranhão HML, Batista TM, Carneiro EM, Ferreira F, Costa J, Soares LAL, Sá MDC, Souza TP, Wanderley AG. Hypoglycaemic activity and molecular mechanisms of Caesalpinia ferrea Martius bark extract on streptozotocin-induced diabetes in Wistar rats. J Ethnopharmacol. 2011;137:1533–41.

    Article  CAS  PubMed  Google Scholar 

  13. Wu T, Zhou X, Deng Y, Jing Q, Li M, Yuan L. In vitro studies of Gynura divaricata (L.) DC extracts as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. J Ethnopharmacol. 2011;136:305–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hamza N, Berke B, Cheze C, Agli AN, Robinson P, Gin H, Moore N. Prevention of type 2 diabetes induced by high fat diet in the C57BL/6 J mouse by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J Ethnopharmacol. 2010;128:513–8.

    Article  PubMed  Google Scholar 

  15. Ibeh BO, Ezeaja MI. Preliminary study of antidiabetic activity of the methanolic leaf extract of Axonopus compressus (P. Beauv) in alloxan-induced diabetic rats. J Ethnopharmacol. 2011;138:713–6.

    Article  PubMed  Google Scholar 

  16. Wang YM, Hu YF, Xiao H. Progress of studies on hypoglycemic constituents and acting mechanism of natural products. Chin J Ethnomed Ethnopharm. 2008;4:15–7.

    Article  Google Scholar 

  17. Singh RK, Sharma B. Certain traditional Indian plants and their therapeutic applications: a review. VRI Phytomed. 2013;1(1):40–50.

    Google Scholar 

  18. Deshpande AP, Jawalgekar RR, Ranade S. Dravyagun Vigayan. Pune: Anmol Prakashan; 2002.

    Google Scholar 

  19. Someya S, Yoshiki Y, Okubo K. Antioxidant compounds from bananas (Musa cavendish). Food Chem. 2002;79:351–4.

    Article  CAS  Google Scholar 

  20. Ghosal S. Steryl glycoside and acylsteryl glycoside from Musa paradisiaca. Phytochemistry. 1985;24:1807–1810.

    Article  CAS  Google Scholar 

  21. Lewis DA, Shaw GP. A natural flavonoid and synthetic analogues protect the gastric mucosa from aspirin-induced erosions. J Nut Biochem. 2001;12:95–100.

    Article  CAS  Google Scholar 

  22. OECD. Guidelines for testing of chemicals 425, Acute oral toxicity-up-and-down procedure; 2001. pp. 1–26.

  23. Prince PSM, Kamalakkannan N, Menon VP. Antidiabetic and antihyperlipidaemic effect of alcoholic Syzgium cumini seeds in alloxan induced diabetic albino rats. J Ethnopharmacol. 2004;91:209–13.

    Article  PubMed  Google Scholar 

  24. El-Demerdash FM, Yousef MI, Abou El-Naga NI. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem Toxicol. 2005;43:57–63.

    Article  CAS  PubMed  Google Scholar 

  25. Nandakumar K, Handral M, Kumar AY, Talwar S, Dhayabaran D. Hypoglycemic and antidiabetic activity of stem extracts of Erythrina indica in normal and alloxan induced diabetic rats. Saudi Pharm J. 2011;19:35–42.

    Article  PubMed  Google Scholar 

  26. Mazhar J, Mazumder A. Evaluation of antidiabetic activity of methanolic leaf extract of Coriandrum sativum in alloxan induced diabetic rats. Res J Pharm Biol Chem Sci. 2013;4:500–7.

    Google Scholar 

  27. Carroll NV, Longley RW, Roe JH. The determination of Glycogen in liver and muscle by use of Anthrone reagent. J Biol Chem 1956;220(2):583–593.

    CAS  PubMed  Google Scholar 

  28. Eleazu CO, Iroaganachi M, Eleazu KC. Ameliorative potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiacal L.) on renal and liver growth in streptozotocin induced diabetic rats. J Acute Dis. 2013;2(2):140–147.

    Article  Google Scholar 

  29. Kang MJ, Lee EK, Lee SS. Effects of two P/S ratios with same peroxidizability index value and antioxidants supplementation on serum lipid concentration and hepatic enzyme activities of rats. Clin Chim Acta. 2004;350:79–87.

    Article  CAS  PubMed  Google Scholar 

  30. Kayamori F, Igarashi K. Effects of dietary nasunin on the serum cholesterol level in rats. Biosci Biotech Biochem. 1994;58:570–1.

    Article  CAS  Google Scholar 

  31. Navghare VV, Dhawale SC, Phanse MA, Ingole PG, Pawale SS, Sonwane PP. Free radical scavenging property of some commonly known Musa species. Indo Am J Pharm Res. 2013;3:6027–34.

    Google Scholar 

  32. Matsudha H, Morikawa T, Yoshikawa M. Antidiabetogenic constituents from several natural medicine. Pure Appl Chem. 2002;74:1301–8.

    Google Scholar 

  33. Guy K, Jaekyung K, Klaus H, Yanyan C, Xiaozhuo C. Antidiabetes and antiobesity activity of Lagerstroemia speciosa. eCAM. 2007;10:1–7.

    Google Scholar 

  34. Ghaisas M, Navghare V, Takawale A, Zope V, Tanwar M, Deshpande A. Effect of Tectona grandis Linn. on dexamethasone-induced insulin resistance in mice. J Ethnopharmacol. 2009;122:304–7.

    Article  PubMed  Google Scholar 

  35. Rai PK, Jaiswal D, Rai DK, Sharma B, Watal G. Antioxidant potential of oral feeding of Cynodon dactylon extract on diabetes induced oxidative stress. J Food Biochem. 2010;34(1):78–92.

    Article  CAS  Google Scholar 

  36. Anderson RA, Polansky MM. Tea enhances insulin activity. J Agric Food Chem. 2002;50:7182–6.

    Article  CAS  PubMed  Google Scholar 

  37. Pereira A, Maraschin M. Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health. J Ethnopharmacol. 2015;160:149–63.

    Article  CAS  PubMed  Google Scholar 

  38. McGillicuddy FC, Reilly MP, Rader DJ. Adipose modulation of high-density lipoprotein cholesterol: implications for obesity, high-density lipoprotein metabolism, and cardiovascular disease. Circulation. 2011;124:1602–5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rai PK, Jaiswal D, Mehta S, Rai DK, Sharma B, Watal G. Effect of Curcuma longa freeze dried rhizomes powder with milk in STZ induced diabetic rats. Indian J Clin Biochem. 2010;25(2):175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahmed OM, Moneim AA, Yazid IA, Mahmoud AM. Antihyperglycemic, antihyperlipidemic and antioxidant effects and the probable mechanisms of action of Ruta graveolens infusion and rutin in nicotinamide–streptozotocin-induced diabetic rats. Diabetol Croat. 2010;39:15–35.

    CAS  Google Scholar 

  41. Sharmila BG, Kumar G, Pandian MR. Cholesterol lowering activity of the aqueous fruit extracts of Trichosanthes dioica Roxb (L.) in normal and STZ diabetic rats. J Clin Diagn Res. 2007;1:561–9.

    Google Scholar 

  42. Morehouse L, Ban Gerter FW, Ninno M, Inskeep B, Carthy P, Pethini J. Comparison of synthetic saponin cholesterol absorption inhibitors in rabbits: evidence for a non-stoichiometric, intestinal mechanism of action. J Lipid Res. 1999;40:464–74.

    CAS  PubMed  Google Scholar 

  43. Farmer JA. Diabetic dyslipidemia and atherosclerosis: evidence from clinical trials. Curr Atheroscler Rep. 2007;9:162–8.

    Article  CAS  PubMed  Google Scholar 

  44. William KW, Goldberg ND. Dependence of insulin on apparent hydrocortisone activation of hepatic synthetase. Proc Natl Acad Sci. 1967;58:1512–5.

    Google Scholar 

  45. Maiti R, Jana D, Das UK, Ghosh D. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin induced diabetic rats. J Ethnopharmacol. 2004;2004(92):85–91.

    Article  Google Scholar 

  46. Neto MCL, de Vasconcelosa CFB, Thijana VN, Caldasa GFR, Araújob AV, Costa-Silvac JH, Amorima ELC, Ferreirab F, de Oliveirad AFM, Wanderleya AG. Evaluation of antihyperglycaemic activity of Calotropis procera leaves extract on streptozotocin-induced diabetes in Wistar rats. Braz J Pharmacogn. 2013;2013(23):913–9.

    Article  Google Scholar 

  47. Umesh CS, Yadav K, Moorthy K, Najma Z. Combined treatment of sodium orthovanadate and Mormodica charantia fruit extract prevents alterations in lipid profile and lipogenic enzymes alloxan diabetic rats. Mol Cell Biochem. 2005;268:111–20.

    Article  Google Scholar 

  48. Vishwanathan V. Prevention of diabetic nephropathy: a diabetologist’s perspective. Indian J Nephrol. 2004;14:157–62.

    Google Scholar 

  49. Bhavpriya V, Govindasamy S. Biochemical studies on the hypoglycaemic effect of Aegle marmelos Corr Roxb in streptozotocin induced diabetic rats. Indian Drugs. 2000;37:474–7.

    Google Scholar 

  50. Satirapoj B. Nephropathy in diabetes. Adv Exp Med Biol. 2012;771:107–22.

    PubMed  Google Scholar 

  51. Bretzel RG. Prevention and slowing down the progression of the diabetic nephropathy through antihypertensive therapy. J Diab Complicat. 1997;11:112–22.

    Article  CAS  Google Scholar 

  52. Halil N, Ers Z, Dilek G, Osman Z, Yasemin B, Sema A. The effect of losartan on plasma atrial natriuretic peptide levels in the diabetic rat model. Turk J Endocrinol Metab. 1999;1:17–22.

    Google Scholar 

  53. Chauhan P, Mahajan S, Kulshrestha A, Srivastava S, Sharma B, Goswamy HM, Prasad GBKS. Bougainvillea spectabilis exhibits antihyperglycemic and antioxidant activities in experimental diabetes. J Evid Based Complement Alternat Med. 2015. doi:10.1177/2156587215595152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Navghare.

Ethics declarations

Conflict of Interest

Authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navghare, V., Dhawale, S. Suppression of Type-II Diabetes with Dyslipidemia and Nephropathy by Peels of Musa cavendish Fruit. Ind J Clin Biochem 31, 380–389 (2016). https://doi.org/10.1007/s12291-016-0548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-016-0548-y

Keywords

Navigation