Skip to main content
Log in

Genetics of Obesity

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Numerous classical genetic studies have proved that genes are contributory factors for obesity. Genes are directly responsible for obesity associated disorders such as Bardet–Biedl and Prader–Willi syndromes. However, both genes as well as environment are associated with obesity in the general population. Genetic epidemiological approaches, particularly genome-wide association studies, have unraveled many genes which play important roles in human obesity. Elucidation of their biological functions can be very useful for understanding pathobiology of obesity. In the near future, further exploration of obesity genetics may help to develop useful diagnostic and predictive tests for obesity treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197–209.

    Article  PubMed  Google Scholar 

  2. Deurenberg-Yap M, Schmidt G, van Staveren WA, Deurenberg P. The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int J Obes Relat Metab Disord. 2000;24:1011–7.

    Article  CAS  PubMed  Google Scholar 

  3. Pan WH, Flegal KM, Chang HY, Yeh WT, Yeh CJ, Lee WC. Body mass index and obesity-related metabolic disorders in Taiwanese and US whites and blacks: implications for definitions of overweight and obesity for Asians. Am J Clin Nutr. 2004;79:31–9.

    CAS  PubMed  Google Scholar 

  4. WHO expert consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The Lancet, 2004; 157-163.

  5. http://whqlibdoc.who.int/publications/2011/9789241501491_eng.pdf.

  6. Friedman JM. Modern science versus the stigma of obesity. Nat Med. 2004;10:563–9.

    Article  CAS  PubMed  Google Scholar 

  7. Lyon HN, Hirschhorn JN. Genetics of common forms of obesity: a brief overview. Am J Clin Nutr. 2005;82:215S–7S.

    CAS  PubMed  Google Scholar 

  8. Hebebrand J, Friedel S, Schauble N, Geller F, Hinney A. Perspectives: molecular genetic research in human obesity. Obes Rev. 2003;4:139–46.

    Article  CAS  PubMed  Google Scholar 

  9. Farooqi IS, Rahilly S. New advances in the genetics of early onset obesity. Int J Obes. 2005;29:1149–52.

    Article  CAS  Google Scholar 

  10. Bell CG, Walley AJ, Froguel P. The genetics of human obesity. Nat Rev Genet. 2005;6:221–34.

    Article  CAS  PubMed  Google Scholar 

  11. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE. The body-mass index of twins who have been reared apart. N Engl J Med. 1990;322:1483–7.

    Article  CAS  PubMed  Google Scholar 

  12. Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabet Metab Rev. 1990;6:1–27.

    Article  CAS  Google Scholar 

  13. Farooqi IS, Rahilly S. Monogenic human obesity syndromes. Recent Prog Horm Res. 2004;59:409–24.

    Article  CAS  PubMed  Google Scholar 

  14. Yang W, Kelly T, He J. Genetic epidemiology of obesity. Epidemiol Rev. 2007;29:49–61.

    Article  PubMed  Google Scholar 

  15. Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science. 1996;271:994–6.

    Article  CAS  PubMed  Google Scholar 

  16. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.

    Article  CAS  PubMed  Google Scholar 

  17. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387:903–8.

    Article  CAS  PubMed  Google Scholar 

  18. Echwald SM, Rasmussen SB, Sorensen TI, Andersen T, Tybjaerg-Hansen A, Clausen JO, et al. Identification of two novel missense mutations in the human OB gene. Int J Obes Relat Metab Disord. 1997;21:321–6.

    Article  CAS  PubMed  Google Scholar 

  19. Oksanen L, Kainulainen K, Heiman M, Mustajoki P, Kauppinen-Makelin R, Kontula K. Novel polymorphism of the human ob gene promoter in lean and morbidly obese subjects. Int J Obes Relat Metab Disord. 1997;21:489–94.

    Article  CAS  PubMed  Google Scholar 

  20. Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology. 1997;138:4489–92.

    Article  CAS  PubMed  Google Scholar 

  21. Clement Karine, Ferre Pascal. Genetics and the pathophysiology of obesity. Pediatric Res. 2003;53:721–5.

    Article  Google Scholar 

  22. Masuo K, Straznicky NE, Lambert GW, Katsuya T, Sugimoto K, Rakugi H, et al. Leptin-receptor polymorphisms relate to obesity through blunted leptin-mediated sympathetic nerve activation in a Caucasian male population. Hypertens Res. 2008;31(6):1093–100.

    Article  CAS  PubMed  Google Scholar 

  23. Flickinger and Salz. The Drosophila sex determination gene snf encodes a nuclear protein with sequence and functional similarity to the mammalian U1A snRNP protein. Genes Dev. 1994;8:914–25.

    Article  PubMed  Google Scholar 

  24. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997;88:131–41.

    Article  CAS  PubMed  Google Scholar 

  25. Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, et al. Melanocortin receptors in leptin effects. Nature. 1997;390:349.

    Article  CAS  Google Scholar 

  26. Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106(2):271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, ORahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085–95.

    Article  CAS  PubMed  Google Scholar 

  28. Kondo I, Hamabe J, Yamamoto K, Niikawa N. Exclusion mapping of the Cohen syndrome gene from the Prader-Willi syndrome locus. Clin Genet. 1990;38:422–6.

    Article  CAS  PubMed  Google Scholar 

  29. Russell-Eggitt IM, Clayton PT, Coffey R, Kriss A, Taylor DS, Taylor JF. Alstrom syndrome. Report of 22 cases and literature review. Ophthalmology. 1998;105:1274–80.

    Article  CAS  PubMed  Google Scholar 

  30. Beales PL, Warner AM, Hitman GA, Thakker R, Flinter FA. Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet. 1997;34:92–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruford EA, Riise R, Teague PW, Porter K, Thomson KL, Moore AT, et al. Linkage mapping in 29 Bardet–Biedl syndrome families confirms loci in chromosomal regions 11q13, 15q22.3-q23, and 16q21. Genomics. 1997;41:93–9.

    Article  CAS  PubMed  Google Scholar 

  32. Young TL, Penney L, Woods MO, Parfrey PS, Green JS, Hefferton D, et al. A fifth locus for Bardet–Biedl syndrome maps to chromosome 2q31. Am J Hum Genet. 1999;64:900–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, et al. The human obesity gene Map: the 2005 update. Obesity (Silver Spring). 2006;14:529–644.

    Article  Google Scholar 

  34. Goldstone AP. Prader–Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol Metab. 2004;15:12–20.

    Article  CAS  PubMed  Google Scholar 

  35. Chiang AP, Beck JS, Yen HJ, Tayeh MK, Scheetz TE, Swiderski RE, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet–Biedl syndrome gene (BBS11). Proc Natl Acad Sci USA. 2006;103:6287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Collin GB, Marshall JD, Ikeda A, So WV, Russell-Eggitt I, Maffei P, et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nat Genet. 2002;31:74–8.

    CAS  PubMed  Google Scholar 

  37. Lower KM, Turner G, Kerr BA, Mathews KD, Shaw MA, Gedeon AK, et al. Mutations in PHF6 are associated with Borjeson–Forssman–Lehmann syndrome. Nat Genet. 2002;32:661–5.

    Article  CAS  PubMed  Google Scholar 

  38. Chandler KE, Kidd A, Al-Gazali L, Kolehmainen J, Lehesjoki AE, Black GC, et al. Diagnostic criteria, clinical characteristics, and natural history of Cohen syndrome. J Med Genet. 2003;40:233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin P, Warren ST. New insights into fragile X syndrome: from molecules to neurobehaviors. Trends Biochem Sci. 2003;28:152–8.

    Article  CAS  PubMed  Google Scholar 

  40. Wilson M, Mulley J, Gedeon A, Robinson H, Turner G. New X linked syndrome of mental retardation, gynecomastia, and obesity is linked to DXS255. Am J Med Genet. 1991;40:406–13.

    Article  CAS  PubMed  Google Scholar 

  41. Leshinsky-Silver E, Zinger A, Bibi CN, Barash V, Sadeh M, Lev D, Sagie TL. MEHMO (mental retardation, epileptic seizures, hypogenitalism, microcephaly, obesity): a new X-linked mitochondrial disorder. Eur J Hum Genet. 2002;10:226–30.

    Article  CAS  PubMed  Google Scholar 

  42. Gul D, Ogur G, Tunca Y, Ozcan O. Third case of WAGR syndrome with severe obesity and constitutional deletion of chromosome [11] [p12p14]. Am J Med Genet. 2002;107:70–1.

    Article  PubMed  Google Scholar 

  43. Rose EA, Glaser T, Jones C, Smith CL, Lewis WH, Call KM, et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. Cell. 1990;60:495–508.

    Article  CAS  PubMed  Google Scholar 

  44. Bamshad M, Lin RC, Law DJ, Watkins WC, Krakowiak PA, Moore ME, et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet. 2004;16:311–5.

    Article  Google Scholar 

  45. Brzustowicz LM, Farrell S, Khan MB, Weksberg R. Mapping of a new SGBS locus to chromosome Xp22 in a family with a severe form of Simpson-Golabi-Behmel syndrome. Am J Hum Genet. 1999;65:779–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Manolio TA. Genome wide association studies and assessment of the risk of disease. N Engl J Med. 2010;363(2):166–76.

    Article  CAS  PubMed  Google Scholar 

  47. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity [J]. Nat Genet. 2009;41(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  48. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6:95–108.

    Article  CAS  PubMed  Google Scholar 

  49. Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet. 2007;8:657–62.

    Article  CAS  PubMed  Google Scholar 

  50. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:e115.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Loos RJ, Bouchard C. FTO: the first gene contributing to common forms of human obesity. Obes Rev. 2008;9:246–50.

    Article  CAS  PubMed  Google Scholar 

  52. Chambers JC, Elliott P, Zabaneh D, Zhang W, Li Y, Froguel P, et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet. 2008;40:716–8.

    Article  CAS  PubMed  Google Scholar 

  53. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41:25–34.

    Article  CAS  PubMed  Google Scholar 

  54. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40:768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Warrington NM, Howe LD, Paternoster L, Kaakinen M, Herrala S, Huikari V, et al. A genome-wide association study of body mass index across early life and childhood. Int J Epidemiol. 2015;44(2):700–12.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Meyre D, Delplanque J, Chevre JC, Lecoeur C, Lobbens S, Gallina S, Durand E, Vatin V. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet. 2009;41(2):157–9.

    Article  CAS  PubMed  Google Scholar 

  59. Heard-Costa NL, Zillikens MC, Monda KL, Johansson A, Harris TB, Fu M, et al. NRXN3 Is a novel locus for waist circumference: a genome-wide association study from the charge consortium. Dermitzakis ET, ed. PLoS Genet. 2009;5(6):e1000539.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39(6):724–6.

    Article  CAS  PubMed  Google Scholar 

  61. Norris JM, Langefeld CD, Talbert ME, Wing MR, Haritunians T, Fingerlin TE, et al. Genome wide association study and follow-up analysis of adiposity traits in hispanic-Americans: the IRAS family study. Obesity (Silver Spring, Md). 2009;17:1932–41.

    Article  Google Scholar 

  62. Ng MC, Hester JM, Wing MR, Li J, Xu J, Hicks PJ, et al. Genome-Wide Association of BMI in African Americans. Obesity (Silver Spring, Md). 2012;20(3):622–7.

    Article  CAS  Google Scholar 

  63. Wang K, Li WD, Zhang CK, Wang Z, Glessner JT, Grant SF, et al. A genome-wide association study on obesity and obesity-related traits. PLoS ONE. 2011;6(4):e18939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hong KW, Oh B. Recapitulation of genome-wide association studies on body mass index in the Korean population. Int J Obes (Lond). 2012;36(8):1127–30.

    Article  CAS  Google Scholar 

  65. Graff M, Ngwa JS, Workalemahu T, Homuth G, Schipf S, Teumer A, et al. Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course. Hum Mol Genet. 2013;22(17):3597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Loth DW, Artigas MS, Gharib SA, Wain LV, Franceschini N, Koch B, et al. Genome-wide association analysis identifies six new loci associated with forced vital capacity. Nat Genet. 2014;46(7):669–77.

    Article  CAS  PubMed  Google Scholar 

  67. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, et al. A common genetic variant is associated with adult and childhood obesity. Science. 2006;312:279–83.

    Article  CAS  PubMed  Google Scholar 

  68. Grant SF, Li M, Bradfield JP, Kim CE, Annaiah K, Santa E, et al. Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS ONE. 2008;3:e1746.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hinney A, Nguyen TT, Scherag A, Friedel S, Bronner G, Muller TD, et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE. 2007;2:e1361.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fesinmeyer MD, North KE, Ritchie MD, Lim U, Franceschini N, Wilkens L. Genetic risk factors for BMI and obesity in an ethnically diverse population: results from the population architecture using genomics and epidemiology (PAGE) study. Obesity. 2013;21:835–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mei H, Chen W, Jiang F, He J, Srinivasan S, et al. Longitudinal Replication Studies of GWAS Risk SNPs Influencing Body Mass Index over the Course of Childhood and Adulthood. PLoS ONE. 2012;7(2):e31470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Elks CE, Perry JR, Sulem P, Chasman DI, Franceschini N, He C, et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet. 2010;42(12):1077–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L, et al. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. Allison DB, ed. PLoS Genet. 2009;5(6):e1000508.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bradfield JP, Taal HR, Timpson NJ, Scherag A, Lecoeur C, Warrington NM, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tan LJ, Zhu H, He H, Wu KH, Li J, Chen XD, et al. Replication of 6 obesity genes in a meta-analysis of genome-wide association studies from diverse ancestries. PLoS ONE. 2014;9(5):e96149.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Renstrom F, Payne F, Nordstrom A, Brito EC, Rolandsson O, Hallmans G, et al. Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden. Hum Mol Genet. 2009;18(8):1489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Paternoster L, Evans DM, Nohr EA, Holst C, Gaborieau V, Brennan P, et al. Genome-wide population-based association study of extremely overweight young adults—the goya study. PLoS ONE. 2011;6(9):e24303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wen W, Zheng W, Okada Y, Takeuchi F, Tabara Y, Hwang JY, Dorajoo R. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum Mol Genet. 2014;23(20):5492–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ragvina A, Moroc E, Fredmand D, Navratilovae P, Drivenese O, Engstromd PG, et al. Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4 and IRX3. PNAS. 2010;2:775–80.

    Article  Google Scholar 

  81. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507(7492):371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. India facing obesity epidemic: experts. The Hindu. 2007; 10-12.

  83. Yadav K, Krishnan A. Changing patterns of diet, physical activity and obesity among urban, rural and slum populations in north India. Obes Rev. 2008;9(5):400–8.

    Article  CAS  PubMed  Google Scholar 

  84. Ramya K, Radha V, Ghosh S, Majumder PP, Mohan V. Genetic variations in the FTO gene are associated with type 2 diabetes and obesity in south Indians (CURES-79). Diabetes Technol Ther. 2011;13(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  85. Vasan SK, Fall T, Neville MJ, Antonisamy B, Fall CH, Geethanjali FS. Associations of variants in FTO and near MC4R with obesity traits in South Asian Indians. Obesity (Silver Spring). 2012;20(11):2268–77.

    Article  CAS  PubMed  Google Scholar 

  86. Dwivedi OP, Tabassum R, Chauhan G, Kaur I, Ghosh S, Marwaha RK, et al. Strong influence of variants near MC4R on adiposity in children and adults: a cross-sectional study in Indian population. J Hum Genet. 2013;58(1):27–32.

    Article  PubMed  Google Scholar 

  87. Srivastava A, Mittal B, Prakash J, Narain VS, Natu SM, Srivastava N. Evaluation of MC4R [rs17782313, rs17700633], AGRP [rs3412352] and POMC [rs1042571] polymorphisms with obesity in Northern India. Oman Med J. 2014;29(2):114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dorajoo R, Blakemore A, Sim X, Ong RT. Replication of 13 obesity loci among Singaporean Chinese, Malay and Asian-Indian populations. Int J Obes (Lond). 2012;1:159–63.

    Article  Google Scholar 

  89. Been LF, Nath SK, Ralhan SK, Wander GS, Mehra NK, Singh J, et al. Replication of association between a common variant near melanocortin-4 receptor gene and obesity-related traits in Asian Sikhs. Obesity (Silver Spring). 2010;18(2):425–9.

    Article  CAS  Google Scholar 

  90. Srivastava N, Achyut BR, Prakash J, Agarwal CG, Pant DC, Mittal B. Association of cholesteryl ester transfer protein (TaqIB) and apolipoprotein E (HhaI) gene variants with obesity. Mol Cell Biochem. 2008;314(1–2):171–7.

    Article  CAS  PubMed  Google Scholar 

  91. Vikram NK, Bhatt SP, Bhushan B, Luthra K, Misra A, Poddar PK, et al. Associations of −308G/A polymorphism of tumor necrosis factor(TNF)–α gene and serum TNF-α levels with measures of obesity, intra-abdominal and subcutaneous abdominal fat, subclinical inflammation and insulin resistance in Asian Indians in North India. Dis Markers. 2011;31(1):39–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharma M, Misra A, Vikram N, Suryaprakash B, Chhabra S, Garg N, et al. Genotype of the LMNA 1908C > T variant is associated with generalized obesity in Asian Indians in North India. Clin Endocrinol (Oxf). 2011;75(5):642–9.

    Article  PubMed  Google Scholar 

  93. Srivastava A, Mittal B, Prakash J, Srivastava P, Srivastava N. Analysis of MC4R rs17782313, POMC rs1042571, APOE-Hha1 and AGRP rs3412352 genetic variants with susceptibility to obesity risk in North Indians. Ann Hum Biol. 2015;31:1–4.

    Google Scholar 

  94. Srivastava N, Prakash J, Srivastava A, Agarwal CG, Pant DC, Mittal B. Association of apolipoprotein B XbaI gene polymorphism and lipid profile in northern Indian obese. Indian J Human Genet. 2013;19(1):26–31.

    Article  CAS  Google Scholar 

  95. Apurva Srivastava, Balraj Mittal, Jai Prakash, Pranjal Srivastava, Nimisha Srivastava & Neena Srivastava. Association of FTO and IRX3 genetic variants to obesity risk in north India. Ann Hum Biol. 2013; Early Online: 1–6.

  96. Gupta V, Vinay DG, Sovio U, Rafiq S, KranthiKumar MV, Janipalli CS. Association study of 25 type 2 diabetes related Loci with measures of obesity in Indian sib pairs. PLoS ONE. 2013;8(1):e53944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by DBT, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balraj Mittal.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Srivastava, N. & Mittal, B. Genetics of Obesity. Ind J Clin Biochem 31, 361–371 (2016). https://doi.org/10.1007/s12291-015-0541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-015-0541-x

Keywords

Navigation