Advertisement

Indian Journal of Clinical Biochemistry

, Volume 31, Issue 2, pp 127–137 | Cite as

Role of Endoplasmic Reticulum Stress and Unfolded Protein Responses in Health and Diseases

  • Abbas Ali MahdiEmail author
  • Syed Husain Mustafa Rizvi
  • Arshiya Parveen
Review Article

Abstract

Endoplasmic reticulum (ER) is the site of protein synthesis, protein folding, maintainance of calcium homeostasis, synthesis of lipids and sterols. Genetic or environmental insults can alter its function generating ER stress. ER senses stress mainly by three stress sensor pathways, namely protein kinase R-like endoplasmic reticulum kinase-eukaryotic translation-initiation factor 2α, inositol-requiring enzyme 1α-X-box-binding protein 1 and activating transcription factor 6-CREBH, which induce unfolded protein responses (UPR) after the recognition of stress. Recent studies have demonstrated that ER stress and UPR signaling are involved in cancer, metabolic disorders, inflammatory diseases, osteoporosis and neurodegenerative diseases. However, the precise knowledge regarding involvement of ER stress in different disease processes is still debatable. Here we discuss the possible role of ER stress in various disorders on the basis of existing literature. An attempt has also been made to highlight the present knowledge of this field which may help to elucidate and conjure basic mechanisms and novel insights into disease processes which could assist in devising better future diagnostic and therapeutic strategies.

Keywords

ER stress UPR Diseases Chaperons 

Notes

Acknowledgments

This work was supported by Indian Council of Medical Research (ICMR) [Project No. 45/6/2013 BIO/BMS] and [Project No. 45/9/2013 Nan/BMS]. We are grateful to Indian Council of Medical Research (ICMR) for award of fellowships to SHMR and AP.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Paschen W, Frandsen A. Endoplasmic reticulum dysfunction a common denominator for cell injury in acute and degenerative diseases of the brain? J Neurochem. 2001;79:719–25.PubMedCrossRefGoogle Scholar
  2. 2.
    Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res. 2005;569:29–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 2004;11:372–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene. 2003;22:8608–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases. Cell Death Differ. 2006;13:385–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhao L, Ackerman SL. Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol. 2006;18:444–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJ, Samali A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med. 2011;15:2025–39.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012;197(7):857–67.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfoldedprotein response. Nat Cell Biol. 2000;2:326–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Ma K, Vattem KM, Wek RC. Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor- 2 kinase in response to endoplasmic reticulum stress. J Biol Chem. 2002;2002(277):18728–35.CrossRefGoogle Scholar
  11. 11.
    Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell. 2002;3:99–111.PubMedCrossRefGoogle Scholar
  12. 12.
    Jäger R, Bertrand MJ, Gorman AM, Vandenabeele P, Samali A. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell. 2012;104:259–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Gorman AM, Healy SJ, Jäger R, Samali A. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther. 2012;134:306–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Logue SE, Cleary P, Saveljeva S, Samali A. New directions in ER stress-induced cell death. Apoptosis. 2013;18:537–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Bravo R, Gutierrez T, Paredes F, Gatica D, Rodriguez AE, Pedrozo Z, et al. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. Int J Biochem Cell Biol. 2012;44:16–20.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, et al. Increased ERmitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci. 2011;124:2143–52.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Szegezdi E, MacDonald DC, Ni Chonghaile T, Gupta S, Samali A. Bcl-2 family on guard at the ER. Am J Physiol Cell Physiol. 2009;296:941–53.CrossRefGoogle Scholar
  18. 18.
    Sánchez AM, Martínez-Botas J, Malagarie-Cazenave S, Olea N, Vara D, Lasunción MA, et al. Induction of the endoplasmic reticulum stress proteinGADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem Biophys Res Commun. 2008;372:785–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12:982–95.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rizvi SHM, Parveen A, Verma AK, Ahmad I, Arshad M, Mahdi AA. Aluminium induced endoplasmic reticulum stress mediated cell death in SH-SY5Y neuroblastoma cell line is independent of p53. PLoS One. 2014;9(5):e98409.CrossRefGoogle Scholar
  21. 21.
    Parveen A, Rizvi SHM, Mahdi F, Tripathi S, Ahmad I, Mahdi AA, et al. Silica nanoparticles mediated neuronal cell death in corpus striatum of rat brain: implication of mitochondrial, endoplasmic reticulum and oxidative stress. J Nanopart Res. 2014;16:2664.CrossRefGoogle Scholar
  22. 22.
    McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 2001;21:1249–59.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell. 2009;36:487–99.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rodriguez D, Rojas-Rivera D, Hetz C. Integrating stress signals at the endoplasmic reticulum: the BCL-2 protein family rheostat. Biochim Biophys Acta. 2011;1813:564–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Novoa I, Zeng H, Harding HP, Ron D. Feedback inhibition of the unfolded protein response by GADD34- mediated dephosphorylation of eIF2α. J Cell Biol. 2001;153:1011–21.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Brush MH, Weiser DC, Shenolikar S. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1α to the endoplasmic reticulum and promotes dephosphorylation of the α subunit of eukaryotic translation initiation factor 2. Mol Cell Biol. 2003;23:1292–303.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kojima E, Takeuchi A, Haneda A, Yagi A, Hasegawa T, Yamaki K, et al. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J. 2003;17:1573–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, et al. Activation of Caspase- 12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem. 2001;276:13935–40.PubMedGoogle Scholar
  29. 29.
    Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Parveen A, Rizvi SHM, Gupta A, Singh R, Ahmad I, Mahdi F, et al. NMR-based metabonomics study of sub-acute hepatotoxicity induced by silica nanoparticles in rats after intranasal exposure. Cell Mol (Noisy-le-Grand France). 2012;58:196–203.Google Scholar
  31. 31.
    Tripathi S, Mahdi AA, Nawab A, Chander R, Hasan M, Siddiqui MS, et al. Influence of age on aluminum induced lipid peroxidation and neurolipofuscin in frontal cortex of rat brain: abehavioral, biochemical and ultrastructural study. Brain Res. 2009;1253:107–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Tripathi S, Somashekar BS, Mahdi AA, Gupta A, Mahdi F, Hasan M, et al. Aluminum-mediated metabolic changes in rat serum and urine: a proton nuclear magnetic resonance study. J Biochem Mol Toxicol. 2008;22:119–27.PubMedCrossRefGoogle Scholar
  33. 33.
    Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal. 2006;8:1391–418.PubMedCrossRefGoogle Scholar
  34. 34.
    Tu BP, Weissman JS. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol. 2004;164:341–6.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sevier CS, Kaiser CA. Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta. 2008;1783:549–56.PubMedCrossRefGoogle Scholar
  36. 36.
    Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9:2277–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Higa A, Chevet E. Redox signaling loops in the unfolded protein response. Cell Signal. 2012;24:1548–55.PubMedCrossRefGoogle Scholar
  38. 38.
    Cioffi DL. Redox regulation of endothelial canonical transient receptor potential channels. Antioxid Redox Signal. 2011;15:1567–82.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Santos CX, Tanaka LY, Wosniak J, Laurindo FR. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial eletron transport, and NADPH oxidase. Antioxid Redox Signal. 2009;11:2409–27.PubMedCrossRefGoogle Scholar
  41. 41.
    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;2003(11):619–33.CrossRefGoogle Scholar
  42. 42.
    Rizvi F, Shukla S, Kakkar P. Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3β/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death Dis. 2014;27(5):e1153.CrossRefGoogle Scholar
  43. 43.
    Chevillard G, Blank V. NFE2L3 (NRF3): the Cinderella of the Cap‘n’Collar transcription factors. Cell Mol Life Sci. 2011;68:3337–48.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang Y, Hayes JD. Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Biochem J. 2010;430:497–510.PubMedCrossRefGoogle Scholar
  45. 45.
    Glover-Cutter KM, Lin S, Blackwell TK. Integration of the unfolded protein and oxidative stress responses through SKN-1/Nrf. PLoS Genet. 2013;9(9):e1003701.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem. 2004;279:20108–17.PubMedCrossRefGoogle Scholar
  47. 47.
    Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA. Nrf2 is a direct PERK substrate and effector of PERKdependent cell survival. Mol Cell Biol. 2003;23:7198–209.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P. ER stress induced inflammation: does it aid or impede disease progression? Trends Mol Med. 2012;10:589–98.CrossRefGoogle Scholar
  49. 49.
    Chaudhari N, Talwar P, Parimisetty A, Lefebvre d’Hellencourt C, Ravanan P. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci. 2014;29(8):213.Google Scholar
  50. 50.
    Lin JH, Walter P, Yen TSB. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hotamisligil GS. Role of endoplasmic reticulum stress and c- Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes. 2005;54(Suppl 2):S73–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Verfaillie T, Garg AD, Agostinis P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett. 2010;332(2):249–64.PubMedCrossRefGoogle Scholar
  53. 53.
    Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol. 2008;8:923–34.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhang K, Kaufman RJ. From endoplasmic-reticulumstress to the inflammatory response. Nature. 2008;454:455–62.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453:807–11.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Angel P, Szabowski A, Schorpp-Kistner M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene. 2001;20:2413–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–88.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Horng T, Hotamisligil GS. Linking the inflammasome to obesity-related disease. Nat Med. 2011;17:164–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Shenderov K, Riteau N, Yip R, Mayer-Barber KD, Oland S, Hieny S, et al. Cutting edge:endoplasmic reticulum stress liceses macrophages to produce mature IL-1beta in response toTLR4stimulation through a caspase-8- and TRIF-dependent pathway. J Immunol. 2014;192:2029–33.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Oslowski CM, Hara T, O’sullivan-Murphy B, Kanekura K, Lu S, Hara M, et al. Thioredoxin-interacting protein mediates ERstress-induced beta cell death through initiation of the inflammasome. Cell Metab. 2012;16:265–73.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J, et al. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol. 2002;22:3864–74.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001;7:1153–63.PubMedCrossRefGoogle Scholar
  63. 63.
    Liu J, Hoppman N, O’Connell JR, Wang H, Streeten EA, McLenithan JC, et al. A functional haplotype in EIF2AK3, an ER stress sensor, is associated with lower bone mineral density. J Bone Miner Res. 2012;27:33–41.Google Scholar
  64. 64.
    Goltzman D. Discoveries, drugs and skeletal disorders. Drug Discov. 2002;1(10):784–96.CrossRefGoogle Scholar
  65. 65.
    Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Aubin JE. Regulation of osteoblast formation and function. Rev Endocr Metab Disord. 2001;2(1):81–94.PubMedCrossRefGoogle Scholar
  67. 67.
    He L, Lee J, Jang JH, Sakchaisri K, Hwang J, Cha-Molstad HJ, et al. Osteoporosis regulation by salubrinal through eIF2α mediated differentiation of osteoclast and osteoblast. Cell Signal. 2013;25(2):552–60.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Norris R, Parker M. Diabetes mellitus and hip fracture: a study of 5966 cases. Injury. 2011;42:1313–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Follak N, Kloting I, Merk H. Influence of diabetic metabolic state on fracture healing in spontaneously diabetic rats. Diabetes Metab Res Rev. 2005;21:288–96.PubMedCrossRefGoogle Scholar
  70. 70.
    Liu W, Zhu X, Wang Q, Wang L. Hyperglycemia induces endoplasmic reticulum stress-dependent CHOP expression in osteoblasts. Exp Ther Med. 2013;5(5):1289–92.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Tohmonda T, Chiba K, Toyama Y, Horiuchi K. Unfolded protein response mediator, the IRE1α-XBP1 pathway is involved in osteoblast differentiation. Arthritis Res Ther. 2012;14(Suppl 1):P70. doi: 10.1186/ar3671.PubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hino S, Kondo S, Yoshinaga K, Saito A, Murakami T, Kanemoto S, et al. Regulation of ER molecular chaperone prevents bone loss in a murine model for osteoporosis. J Bone Miner Metab. 2010;28(2):131–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Schonthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. Biochem Pharmacol. 2013;85:653–66.PubMedCrossRefGoogle Scholar
  74. 74.
    Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM, et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat. 2000;59:15–26.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007;67:3496–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med. 2006;6:45–54.PubMedCrossRefGoogle Scholar
  77. 77.
    Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Yoshimastu T, et al. Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance. Lung Cancer. 2005;49:55–62.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang Q, He Z, Zhang J, Wang Y, Wang T, Tong S, et al. Over expression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance. Cancer Detect Prev. 2005;29:544–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang XP, Qiu FR, Liu GZ, Chen RF. Correlation between clinicopathology and expression of heat shock protein 70 and glucose-regulated protein 94 in human colonic adenocarcinoma. World J Gastroenterol. 2005;11:1056–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Zheng HC, Takahashi H, Li XH, Hara T, Masuda S, Guan YF, et al. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum Pathol. 2008;39:1042–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ, et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res. 2008;68:498–505.PubMedCrossRefGoogle Scholar
  82. 82.
    Jamora C, Dennert G, Lee AS. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA. 1996;93:7690–4.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Fels DR, Koumenis C. The perk/eif2alpha/atf4 module of the upr in hypoxia resistance and tumor growth. Cancer Biol Ther. 2006;5:723–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C, et al. Perk promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene. 2010;29:3881–95.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Healy SJ, Gorman AM, Mousavi-Shafaei P, Gupta S, Samali A. Targeting the endoplasmic reticulum-stress response as an anticancer strategy. Eur J Pharmacol. 2009;625:234–46.PubMedCrossRefGoogle Scholar
  86. 86.
    Pluquet O, Hainaut P. Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett. 2001;174:1–15.PubMedCrossRefGoogle Scholar
  87. 87.
    Shen Y, White E. p53-dependent apoptosis pathways. Adv Cancer Res. 2001;82:55–84.PubMedCrossRefGoogle Scholar
  88. 88.
    Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy P, Mahdi AA. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget. 2011;2:948–57.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Madan E, Gogna R, Kuppusamy P, Bhatt M, Mahdi AA, Pati U. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trxcomplex. Mol Cell Biol. 2013;33:1285–302.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Madan E, Gogna R, Kuppusamy P, Bhatt M, Pati U, Mahdi AA. TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex. Br J Cancer. 2012;107:516–26.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M, et al. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3β. Genes Dev. 2004;18:261–77.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Elena S, Elena S, Halazonetis TD. p53 and stress in the ER. Genes Dev. 2004;18:241–4.CrossRefGoogle Scholar
  93. 93.
    Tabira T, Chui DH, Kuroda S. Significance of the intracellular Ab42 accumulation in Alzheimer’s disease. Front Biosci. 2002;7:44–9.CrossRefGoogle Scholar
  94. 94.
    Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, et al. Aggregation of a-synuclein in lewy bodies of sporadic Parkinson’s disease and dementia with lewy bodies. Am J Pathol. 1998;152:879–84.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology. 2014;76:27–50.PubMedCrossRefGoogle Scholar
  96. 96.
    Cook DG, Sung JC, Golde TE, Felsenstein KM, Wojczyk BS, Tanzi RE, et al. Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites. Proc Natl Acad Sci USA. 1996;93:9223–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, et al. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer’s disease-linked presenilin-1 mutations. J Biol Chem. 2001;276:43446–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Hoozemans JJM, van Haastert ES, Nijholt DAT, Rozemuller AJM, Eikelenboom P, Scheper W. The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol. 2009;174:1241–51.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Unterberger U, Hoftberger R, Gelpi E, Flicker H, Budka H, Voigtlander T. Endoplasmic reticulum stress features are prominent in Alzheimer’s disease but not in prion diseases in vivo. J Neuropathol Exp Neurol. 2006;65:348–57.PubMedCrossRefGoogle Scholar
  100. 100.
    Gupta SDA, Deepti A, Deegan S, Lisbona F, Hetz C, Samali A. HSP72 protects cells from ER stress induced apoptosis via enhancement of IRE1a-XBP1 signaling through a physical interaction. PLoS Biol. 2010;8:e1000410.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell. 2007;27:53–66.PubMedCrossRefGoogle Scholar
  102. 102.
    Coleman PD, Yao PJ. Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging. 2003;24:1023–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Marwarha G, Raza S, Prasanthi JRP, Ghribi O. Gadd153 and NF-kB crosstalk regulates 27-hydroxycholesterol-induced increase in BACE1 and b-amyloid production in human neuroblastoma SH-SY5Y cells. PLoS One. 2013;8:e70773. doi: 10.1371/journal.pone.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Paula-Lima AC, Adasme T, SanMartin C, Sebollela A, Hetz C, Carrasco MA, et al. Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal. 2011;14:1209–23.PubMedCrossRefGoogle Scholar
  105. 105.
    Querfurth HW, Selkoe DJ. Calcium ionophore increases amyloid-beta peptide production by cultured cells. Biochemistry. 1994;33:4550–61.PubMedCrossRefGoogle Scholar
  106. 106.
    Green KN, LaFerla FM. Linking calcium to A beta and Alzheimer’s disease. Neuron. 2008;59:190–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Ferreiro E, Pereira CMF. Endoplasmic reticulumstress: a new play ER in tauopathies. J Pathol. 2012;226:687–92.PubMedCrossRefGoogle Scholar
  108. 108.
    Hoozemans JJ, Scheper W. Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int J Biochem Cell Biol. 2012;44:1295–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8:663–72.PubMedCrossRefGoogle Scholar
  110. 110.
    Cláudia MF. Pereira Crosstalk between endoplasmic reticulum stress and protein misfolding in neurodegenerative diseases. ISRN Cell Biol. 2013. Article ID 256404.Google Scholar
  111. 111.
    Healy DG, Abou-Sleiman PM, Wood NW. PINK, PANK, or PARK? A clinicians’ guide to familial parkinsonism. Lancet Neurol. 2004;3:652–62.PubMedCrossRefGoogle Scholar
  112. 112.
    Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009;18:48–59.CrossRefGoogle Scholar
  113. 113.
    Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W. Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun. 2007;354:707–11.PubMedCrossRefGoogle Scholar
  114. 114.
    Makioka K, Yamazaki T, Fujita Y, Takatama M, Nakazato Y, Okamoto K. Involvement of endoplasmic reticulum stress defined by activated unfolded protein response in multiple system atrophy. J Neurol Sci. 2010;297:60–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Silva R, Ries V, Oo T, Yarygina O, Jackson-Lewis V, Ryu E, et al. Chop/gadd153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J Neurochem. 2005;95:974–86.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sado M, Yamasaki Y, Iwanaga T, Onaka Y, Ibuki T, Nishihara S, et al. Protective effect against Parkinson’s disease-related insults through the activation of xbp1. Brain Res. 2009;1257:16–24.PubMedCrossRefGoogle Scholar
  117. 117.
    Egawa N, Yamamoto K, Inoue H, Hikawa R, Nishi K, Mori K, et al. The endoplasmic reticulum stress sensor, atf6α protects against neurotoxin-induced dopaminergic neuronal death. J Biol Chem. 2010;286:7947–57.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Brundin P, Li JY, Holton JL, Lindvall O, Revesz T. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci. 2008;9:741–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, et al. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet. 2005;14:3801–11.PubMedCrossRefGoogle Scholar
  120. 120.
    Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ, et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of a-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci USA. 2010;107:9879–84.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Vitte J, Traver S, Maués De Paula AM, Lesage S, Rovelli G, Corti O, et al. Leucine-rich repeat kinase 2 is associated with the endoplasmic reticulum in dopaminergic neurons and accumulates in the core of Lewy bodies in Parkinson disease. J Neuropathol Exp Neurol. 2010;69:959–72. doi: 10.1097/NEN.0b013e3181efc01c.PubMedCrossRefGoogle Scholar
  122. 122.
    Yuan Y, Cao P, Smith MA, Kramp K, Huang Y, Hisamoto N, et al. Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS One. 2011;6(8):e22354. doi: 10.1371/journal.pone.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Murakami T, Shoji M, Imai Y, Inoue H, Kawarabayashi T, Matsubara E, et al. Pael-R is accumulated in Lewy bodies of Parkinson’s disease. Ann Neurol. 2004;2004(55):439–42.CrossRefGoogle Scholar
  124. 124.
    Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell. 2001;105:891–902.PubMedCrossRefGoogle Scholar
  125. 125.
    Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitinprotein ligase activity. J Biol Chem. 2000;275:35661–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Mizuno Y, Hattori N, Matsumine H. Neurochemical and neurogenetic correlates of Parkinson’s disease. J Neurochem. 1998;1998(71):893–902.Google Scholar
  128. 128.
    Omura T, Kaneko M, Okuma Y, Matsubara K, Nomura Y. Endoplasmic reticulum stress and Parkinson’s disease: the role of HRD1 in averting apoptosis in neurodegenerative disease. Oxid Med Cell Longev. 2013. Article ID 239854.Google Scholar
  129. 129.
    Greenman CP, Stephens R, Smith GL, Dalgliesh C, Hunter G, Bignell H, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Holtz WA, O’Malley KL. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem. 2003;278:19367–77.PubMedCrossRefGoogle Scholar
  131. 131.
    Atkin JD, Farg MA, Walker AK, McLean C, Tomas D, Horne MK. Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis. 2008;30:400–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 2008;22:1451–64.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 2006;124:587–99.Google Scholar
  134. 134.
    Vecchi C, Montosi G, Zhang K, Lamberti I, Duncan SA, Kaufman RJ, et al. ER stress controls iron metabolism through induction of hepcidin. Science. 2009;325:877–80.Google Scholar
  135. 135.
    Lee JH, Giannikopoulos P, Duncan SA, Wang J, Johansen CT, Brown JD, et al. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med. 2011;17:812–5.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Chu WS, Das SK, Wang H, Chan JC, Deloukas P, Froguel P, et al. Activating transcription factor 6 (ATF6) sequence polymorphisms in type 2 diabetes and pre-diabetic traits. Diabetes. 2007;56:856–62.Google Scholar
  137. 137.
    Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J, et al. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell. 2007;13:351–64.Google Scholar
  138. 138.
    Meex SJ, Weissglas-Volkov D, van der Kallen CJ, Thuerauf DJ, van Greevenbroek MM, Schalkwijk CG, et al. The ATF6-Met[67]Val substitution is associated with increased plasma cholesterol levels. Arterioscler Thromb Vasc Biol. 2009;29:1322–7.Google Scholar
  139. 139.
    Gkogkas C, Middleton S, Kremer AM, Wardrope C, Hannah M, Gillingwater TH, et al. VAPB interacts with and modulates the activity of ATF6. Hum Mol Genet. 2008;17:1517–26.Google Scholar
  140. 140.
    Harding HP, Ron D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes. 2002;51:S455–61.Google Scholar
  141. 141.
    Delépine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nat Genet. 2000;25:406–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Höglinger GU, Melhem NM, Dickson DW, Sleiman PM, Wang LS, Klei L, et al. PSP Genetics Study Group. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet. 2011;43:699–705.Google Scholar
  143. 143.
    Bouman L, Schlierf A, Lutz AK, Shan J, Deinlein A, Kast J, et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 2011;18:769–82.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Kakiuchi C, Ishiwata M, Nanko S, Kunugi H, Minabe Y, Nakamura K, et al. Functional polymorphisms of HSPA5: possible association with bipolar disorder. Biochem Biophys Res Commun. 2005;336:1136–43.PubMedCrossRefGoogle Scholar
  145. 145.
    Luo S, Mao C, Lee B, Lee AS. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol. 2006;26:5688–97.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Ye R, Jung DY, Jun JY, Li J, Luo S, Ko HJ, et al. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance. Diabetes. 2010;59:6–16.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kudo T, Katayama T, Imaizumi K, Yasuda Y, Yatera M, Okochi M, et al. The unfolded protein response is involved in the pathology of Alzheimer’s disease. Ann N Y Acad Sci. 2002;977:349–55.PubMedCrossRefGoogle Scholar
  148. 148.
    Kim SJ, Zhang Z, Lee YC, Mukherjee AB. Palmitoyl-protein thioesterase-1 deficiency leads to the activation of caspase-9 and contributes to rapid neurodegeneration in INCL. Hum Mol Genet. 2006;15:1580–6.PubMedCrossRefGoogle Scholar
  149. 149.
    Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Investig. 2002;109:525–32.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18:3066–77.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Gragnoli C. CHOP T/C and C/T haplotypes contribute to early-onset type 2 diabetes in Italians. J Cell Physiol. 2008;217:291–5.PubMedCrossRefGoogle Scholar
  152. 152.
    Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Investig. 2008;118:3378–89.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Karasik A, O’Hara C, Srikanta S, Swift M, Soeldner JS, Kahn CR, et al. Genetically programmed selective islet betacell loss in diabetic subjects with Wolfram’s syndrome. Diabetes Care. 1989;12:135–8.PubMedCrossRefGoogle Scholar
  154. 154.
    Inoue, Tanizawa HY, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet. 1998;20:143–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Ishihara H, Takeda S, Tamura A, Takahashi R, Yamaguchi S, Takei D, et al. Disruption of the WFS1 gene in mice causes progressive beta-cell loss and impaired stimulus secretion coupling in insulin secretion. Hum Mol Genet. 2004;13:1159–70.PubMedCrossRefGoogle Scholar
  156. 156.
    Mita M, Miyake K, Zenibayashi M, Hirota Y, Teranishi T, Kouyama K, et al. Association study of the effect of WFS1 polymorphisms on risk of type 2 diabetes in Japanese population. Kobe J Med Sci. 2008;54:E192–9.PubMedGoogle Scholar
  157. 157.
    Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I, et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet. 2003;35:171–5.PubMedCrossRefGoogle Scholar
  158. 158.
    Cichon S, Buervenich S, Kirov G, Akula N, Dimitrova A, Green E, et al. Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nat Genet. 2004;36:783–4.PubMedCrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2015

Authors and Affiliations

  • Abbas Ali Mahdi
    • 1
    Email author
  • Syed Husain Mustafa Rizvi
    • 1
  • Arshiya Parveen
    • 1
  1. 1.Department of BiochemistryKing George’s Medical UniversityLucknowIndia

Personalised recommendations