Gomberg M. An Incidence of Trivalent Carbon Trimethylphenyl. J Am Chem Soc. 1900;22:757–71.
Google Scholar
Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and x-irradiation-A mechanism in common. Science. 1954;119:623–6.
CAS
PubMed
Google Scholar
Commoner B, Townsend J, Pake GE. Free radicals in biological materials. Nature. 1954;174(4432):689–91.
CAS
PubMed
Google Scholar
McCord JM, Fridovich I. Superoxide dismutase an enzymatic function for erythrocuprein (chemocuprein). J Biol Chem. 1969;244(22):6049–55.
CAS
PubMed
Google Scholar
Loschen G, Flohe L, chance B. Respiratory chain linked H O production in pigeon heart mitochondria. FEBS Lett. 1971;18(2):261–4.
CAS
PubMed
Google Scholar
Nohl H, Hegner D. Do mitochondria produce oxygen radicals in vivo? Eur J Biochem. 1978;82:563–7.
CAS
PubMed
Google Scholar
Mittal CK, Murad F. Activation of guanylate cyclase by superoxide-dismutase and hydroxyl radical-Physiological regulator of guanosine 3′,5′-monophosphate formation. Proc Natl Acad Sci USA. 1977;74(10):4360–4.
CAS
PubMed Central
PubMed
Google Scholar
Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed. Oxford: Clarendon Press; 1989.
Google Scholar
Mukherji SM, Singh SP. Reaction mechanism in organic chemistry. Madras: Macmillan IndiaPress; 1986.
Google Scholar
Pham-Huy LA, Hua He, Pham-Huy C. Free Radicals, Antioxidants in Disease and Health. Int J Biomed Sci. 2008;4(2):89–96.
Valko M, Leibfritz D, Moncola J, Cronin MT, Mazura M, Telser J. Review Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.
CAS
PubMed
Google Scholar
Nordberg J, Arner EJ. Reactive oxygen species, antioxidants, and the mammalian Thioredoxin system. Free Radical Biol Med. 2001;31(11):1287–312.
CAS
Google Scholar
Yla-Herttuala S. Oxidized LDL and atherogenesis. Ann N Y Acad Sci. 1999;874:134–7.
CAS
PubMed
Google Scholar
Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci. 2000;899:191–208.
CAS
PubMed
Google Scholar
Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21(3):361–70.
CAS
PubMed
Google Scholar
Kohen R, Nyska A. Invited review Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicol Pathol. 2002;30(6):620–50.
CAS
PubMed
Google Scholar
Halliwell B. Free Radicals and other reactive species in disease. Nature Encyclopedia of life sciences. 2001. p. 1–7.
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Review Cell Signal. 2007;19(9):1807–19.
CAS
Google Scholar
Mugoni V, Santoro MM. Manipulating redox signaling to block tumor angiogenesis, research directions in tumor angiogenesis, Dr. Jianyuan Chai (Ed.), ISBN: 978-953-51-0963-1, InTech, 2013. doi: 10.5772/54593.
Michelson AM, McCord JM, Fridovich I. Superoxide and Superoxide Dismutases. London: Academic Press; 1977. p. 320.
Google Scholar
Kuppusamy P, Zweier JL. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem. 1989;264(17):9880–4.
CAS
PubMed
Google Scholar
Kontos HA, Wei EP, Ellis EF, Jenkins LW, Povlishock JT, Rowe GT, et al. Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ Res. 1985;57(1):142–51.
CAS
PubMed
Google Scholar
McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension. Hypertension. 1999;34:539–45.
CAS
PubMed
Google Scholar
Bielski BHJ, Cabelli DE. Superoxide and hydroxyl radical chemistry in aqueous solution. Active Oxygen in Chemistry. 1996;66–104.
Bielski BHJ, Cabelli BH, Arudi RL, Ross AB. Reactivity of RO2/O2. Radicals in aqueous solution. J Phys Chem Ref Data. 1985;14:1041–100.
CAS
Google Scholar
Bedwell S, Dean RT, Jessup W. The action of defined oxygen centred free radicals on human low density lipoprotein. Biochem J. 1989;262(3):707–12.
CAS
PubMed Central
PubMed
Google Scholar
Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987;1(5):358–64.
CAS
PubMed
Google Scholar
Fenton HJH. Oxidation of tartaric acid in the presence of iron. J Chem Soc Trans. 1894;65:899–910.
CAS
Google Scholar
Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London (A). 1934;147:332–51.
CAS
Google Scholar
De Grey ADNJ. HO2˙: the forgotten radical. DNA Cell Biol. 2002;21:251–7.
PubMed
Google Scholar
Cerruti PA. Pro-oxidant states and tumor activation. Science. 1985;227:375–81.
Google Scholar
Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000;486(1):10–3.
CAS
PubMed
Google Scholar
Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595–603.
CAS
PubMed
Google Scholar
Chae HZ, Kang SW, Rhee SG. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol. 1999;300:219–26.
CAS
PubMed
Google Scholar
Hojo Y, Okado A, kawazoe S, Mizutani T. In vivo singlet-oxygen generation in blood of chromium(VI)-treated mice an electron spin resonance spin-trapping study. Biol Trace Elem Res. 2000;76(1):85–93.
CAS
PubMed
Google Scholar
Agnez-Lima LF, Melo JT, Silva AE, Oliveira AH, Timoteo AR, Lima-Bessa KM, et al. Review DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res. 2012;751(1):1–14.
Google Scholar
Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007–17.
CAS
PubMed
Google Scholar
Kanovasky JR. Singlet oxygen production by biological systems. Chem Biol Interact. 1989;70(1–2):1–28.
Google Scholar
Chan HWS. Singlet oxygen analogs in biological systems: coupled oxygenation of 1,3-dienes by soybean lipoxidase. J Am Chem Soc. 1971;93(9):2357–8.
CAS
Google Scholar
Hayaishi O, Nozaki M. Nature and mechanisms of oxygenases. Science. 1969;164:389–96.
CAS
PubMed
Google Scholar
Kanofsky JR. Singlet oxygen production by lactoperoxidase. J Biol Chem. 1983;258(10):5991–3.
CAS
PubMed
Google Scholar
Sies H, Menck CF. Singlet oxygen induced DNA damage. Mutat Res. 1992;275:367–75.
CAS
PubMed
Google Scholar
Lerner RA, Eschenmoser A. Ozone in biology. Proc Natl Acad Sci USA. 2003;100(6):3013–5.
CAS
PubMed Central
PubMed
Google Scholar
Goldstein BD, Lodi C, Collinson C, Balchum OJ. Ozone and lipid peroxidation. Arch Environ Heath. 1969;18:631–5.
CAS
Google Scholar
Freeman BA, Mudd JB. Reaction of ozone with sulfhydryls of human erythrocytes. Arch Biochem Biophys. 1981;208(1):212–20.
CAS
PubMed
Google Scholar
Mudd JB, Leavitt R, Ongun A, McManus TT. Reaction of ozone with amino acids and proteins. Atmos Environ. 1969;3:669–81.
CAS
PubMed
Google Scholar
Mustafa MG. Biochemical Basis of Ozone Toxicity. Free Radical Biol Med. 1990;9:245–65.
CAS
Google Scholar
Fetner RH. Ozone induced chromosome breakage in human cell culture. Nature. 1962;194:793–4.
CAS
PubMed
Google Scholar
Winterbourn CC, Kettle AJ. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med. 2000;29(5):403–9.
CAS
PubMed
Google Scholar
Albrich JM, McCarthy CA, Hurst JK. Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci USA. 1981;78(1):210–4.
CAS
PubMed Central
PubMed
Google Scholar
Winterbourn CC. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta. 1985;840(2):204–10.
CAS
PubMed
Google Scholar
Prutz WA. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch Biochem Biophys. 1996;332(1):110–20.
CAS
PubMed
Google Scholar
Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999;43(3):521–31.
CAS
PubMed
Google Scholar
Chiueh CC. Neuroprotective properties of nitric oxide. Ann N Y Acad Sci. 1999;890:301–11.
CAS
PubMed
Google Scholar
Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chandhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265–9.
CAS
PubMed Central
PubMed
Google Scholar
Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998;25(4–5):434–56.
CAS
PubMed
Google Scholar
Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994;78(6):931–6.
CAS
PubMed
Google Scholar
Koshland DE Jr. The molecule of the year. Science. 1992;258(5090):1861.
PubMed
Google Scholar
Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271:C1424–37.
CAS
PubMed
Google Scholar
Douki H, Cadet J. Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Rad Res. 1996;24(5):369–80.
CAS
Google Scholar
Ischiropoulos H, Al-Mehdi AB. Peroxynitrite mediated oxidative protein modifications. FEBS Lett. 1995;364(3):279–82.
CAS
PubMed
Google Scholar
Czapski G, Goldstein S. The role of the reactions of NO with superoxide and oxygen in biological systems: a kinetic approach. Free Radic Biol Med. 1995;19(6):785–94.
CAS
PubMed
Google Scholar
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.
CAS
PubMed
Google Scholar
Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann NY Acad Sci. 2008;1147:37–52.
CAS
PubMed Central
PubMed
Google Scholar
Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122(2):221–33.
CAS
PubMed
Google Scholar
De Duve C, Bauduhuin P. peroxisomes (microbodies and related particles). Physiol Rev. 1966;46:323–57.
PubMed
Google Scholar
Schrader M, Fahimi HD. Review Peroxisomes and oxidative stress. Biochim Biophys Acta. 2006;1763(12):1755–66.
CAS
PubMed
Google Scholar
Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481–93.
CAS
PubMed
Google Scholar
Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, Kaiser CA, et al. Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Nat Acad Sci USA. 2006;103(2):299–304.
CAS
PubMed Central
PubMed
Google Scholar
Droge W. Review Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.
CAS
PubMed
Google Scholar
Halliwell B, Gutteridge JM. Free radicals in biology and medicine, vol. Third edition. Midsomer Norton: Oxford University Press; 1999.
Google Scholar
Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radical Biol Med. 2002;32(11):1102–15.
CAS
Google Scholar
Barja G. The flux of free radical attack through mitochondrial DNA is related to aging rate. Aging (Milano). 2000;12(5):342–55.
CAS
PubMed
Google Scholar
Hiraku Y, Kawanishi S, Ichinose T, Murata M. The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis. Ann NY Acad Sci. 2010;1203:15–22.
CAS
PubMed
Google Scholar
Yermilov V, Rubio J, Ohshima H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett. 1995;376(3):207–10.
CAS
PubMed
Google Scholar
Loeb LA, Preston BD. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–30.
CAS
PubMed
Google Scholar
Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, Cotgreave IA. Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem. 2005;386(4):333–7.
CAS
PubMed
Google Scholar
Abe T, Tohgi H, Isobe C, Murata T, Sato C. Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer’s disease. J Neurosci Res. 2002;70(3):447–50.
CAS
PubMed
Google Scholar
Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, et al. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis. 2002;9(2):244–8.
CAS
PubMed
Google Scholar
Martinet W, de Meyer GR, Herman AG, Kockx MM. Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest. 2004;34(5):323–7.
CAS
PubMed
Google Scholar
Broedbaek K, Poulsen HE, Weimann A, Kom GD, Schwedhelm E, Nielsen P, et al. Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis. Free Radical Biol Med. 2009;47(8):1230–3.
CAS
Google Scholar
Tateyama M, Takeda A, Onodera Y, Matsuzaki M, Hasegawa T, Nunomura A, et al. Oxidative stress and predominant Abeta 42 (43) deposition in myopathies with rimmed vacuoles. Acta Neuropathol. 2003;105(6):581–5.
CAS
PubMed
Google Scholar
Siems WG, Grune T, Esterbauer H. 4-Hydroxynonenal formation during ischemia and reperfusion of rat small-intestine. Life Sci. 1995;57(8):785–9.
CAS
PubMed
Google Scholar
Bast A. Oxidative stress and calcium homeostasis. In: Halliwell B, Aruoma OI, editors. DNA and free radicals. London: Ellis Horwood; 1993. p. 95–108.
Google Scholar
Marnett LJ. Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res. 1999;424(1–2):83–95.
CAS
PubMed
Google Scholar
Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil chem Soc. 1998;75(2):199–212.
CAS
Google Scholar
Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;324:1–18.
CAS
PubMed Central
PubMed
Google Scholar
Butterfield DA, Koppal T, Howard B, Subramaniam R, Hall N, Hensley K, et al. Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann N Y Acad Sci. 1998;854:448–62.
CAS
PubMed
Google Scholar
Brodie E, Reed DJ. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxide. Arch Biochem Biophys. 1990;276(1):210–2.
Google Scholar
Pryor WA, Jin X, Squadrito GL. One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci USA. 1994;91(23):11173–7.
CAS
PubMed Central
PubMed
Google Scholar
Berlett BS, Stadtman E. Protein oxidation in aging, disease, and oxidative stress. J Bio Chem. 1997;272(33):20313–6.
CAS
Google Scholar
Kikugawa K, Kato T, Okamoto Y. Damage of amino acids and proteins induced by nitrogen dioxide, a free radical toxin, in air. Free Rad Biol Med. 1994;16(3):373–82.
CAS
PubMed
Google Scholar
Uchida K, Kawakishi S. 2-oxohistidine as a novel biological marker for oxidatively modified proteins. FEBS Lett. 1993;332(3):208–10.
CAS
PubMed
Google Scholar
Garrison WM. Reaction mechanisms in radiolysis of peptides, polypeptides, and proteins. Chem Rev. 1987;8792:381–98.
Google Scholar
Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res. 2000;33:S99–108.
CAS
PubMed
Google Scholar
Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA. 1991;88(23):10540–3.
CAS
PubMed Central
PubMed
Google Scholar
Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem. 1998;7091:268–75.
Google Scholar
Murphy ME, Kehrer JP. Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy. Biochem J. 1989;260(2):359–64.
CAS
PubMed Central
PubMed
Google Scholar
Garland D, Russell P, Zigler JS. Oxidative modification of lens proteins. Basic Life Sci. 1988;49:347–53.
CAS
PubMed
Google Scholar
Chapman ML, Rubin BR, Gracy RW. Increased carbonyl content of proteins in synovial fluid from patients with rhematoid arthritis. J Rheumatol. 1989;16(1):15–8.
CAS
PubMed
Google Scholar
Jones RH, Hothersall JS. The effect of diabetes and dietary ascorbate supplementation on the oxidative modification of rat lens beta L crystallin. Biochem Med Metab Biol. 1993;50(2):197–209.
CAS
PubMed
Google Scholar
Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem. 1987;262(12):5488–91.
CAS
PubMed
Google Scholar
Gavin JR, Alberti KGMM, Davidson MB, DeFronzo RA, Drash A, Gabbe SG, et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183–97.
Google Scholar
Oberley LW. Free radicals and diabetes. Free Radic Biol Med. 1988;5(2):113–24.
CAS
PubMed
Google Scholar
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89(1):27–71.
CAS
PubMed
Google Scholar
Ahmed RG. The physiological and biochemical Effects of diabetes on the balance between oxidative stress and Antioxidant defense system. Med J Islam World Acad Sci. 2005;15(1):31–42.
Google Scholar
Kwong LK, Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys. 1998;350(1):118–26.
CAS
PubMed
Google Scholar
Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab. 2012;2:S267–71.
Google Scholar
Pollack M, Leeuwenburgh C. Molecular mechanisms of oxidative stress in aging: free radicals, aging, antioxidants and disease. Elsevier Science B.V. Handbook of Oxidants and Antioxidants in Exercise. 1999;881–923.
Rivas-Arancibia S, Guevara-Guzmán R, López-Vidal Y, Rodríguez-Martínez E, Zanardo-Gomes M, Angoa-Pérez M, et al. Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol Sci. 2010;113(1):187–97.
CAS
PubMed
Google Scholar
Santiago-López JA, Bautista-Martínez CI, Reyes-Hernandez M, Aguilar-Martínez S, Rivas- Arancibia S. Oxidative stress, progressive damage in the substantia nigra and plasma dopamine oxidation, in rats chronically exposed to ozone. Toxicol Lett. 2010;197(3):193–200.
PubMed
Google Scholar
Pan XD, Zhu YG, Lin N, Zhang J, Ye QY, Huang HP, Chen XC. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer’s disease. Mol Neurodegener. 2011;6(45):1–17.
Google Scholar
Sevcsik E, Trexler AJ, Dunn JM, Rhoades E. Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J Am Chem Soc. 2011;133(18):7152–8.
CAS
PubMed Central
PubMed
Google Scholar
Zhao W, Varghese M, Yemul S, Pan Y, Cheng A, Marano P, et al. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener. 2011;6(1):1–8.
Google Scholar
Witherick J, Wilkins A, Scolding N, Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis. 2010;1–11.
Fisher LJ, Gage FH. Radical directions in Parkinson’s disease. Nat Med. 1995;1(3):201–3.
CAS
PubMed
Google Scholar
Olivieri S, Conti A, Iannaccone S, Cannistraci CV, Campanella A, Barbariga M, et al. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci. 2011;31:18568–77.
CAS
PubMed
Google Scholar
Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol. 2006;545(1):39–50.
CAS
PubMed
Google Scholar
Chang Y, Kong Q, Shan X, Tian G, Ilieva H, Cleveland DW, et al. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS ONE. 2008;3(8):1–19.
Google Scholar
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases. A Review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74.
CAS
PubMed Central
PubMed
Google Scholar
Gonsette RE. Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci. 2008;274(1–2):48–53.
CAS
PubMed
Google Scholar
Mitosek-Szewczyk K, Gordon-Krajcer W, Walendzik P, Stelmasiak Z. Free radical peroxidation products in cerebrospinal fluid and serum of patients with multiple sclerosis after glucocorticoid therapy. Folia Neuropathol. 2010;48(2):116–22.
CAS
PubMed
Google Scholar
Goldstein BD, Witz G. Free radicals and carcinogenesis. Free Radic Res Commum. 1990;11(1–3):3–10.
CAS
Google Scholar
Dreher D, Junod AF. Role of oxygen free radicals in cancer development. Eur J Cancer. 1996;32A(1):30–8.
CAS
PubMed
Google Scholar
Acuna UM, Wittwer J, Ayers S, Pearce CJ, Oberlies NH, De Blanco EJ. Effects of (5Z)-7-Oxozeaenol on the Oxidative pathway of cancer cells. Anticancer Res. 2012;32(7):2665–71.
CAS
PubMed Central
PubMed
Google Scholar
Cairns RA, Harris I, McCracken S, Mak TW. Cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:299–311.
CAS
PubMed
Google Scholar
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal hitological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.
CAS
PubMed
Google Scholar
Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266(1–2):37–56.
CAS
PubMed
Google Scholar
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.
PubMed
Google Scholar
Blau S, Rubinstein A, Bass P, Singaram C, Kohen R. Differences in the reducing power along the rat GI tract: lower antioxidant capacity of the colon. Mol Cell Biochem. 1999;194(1–2):185–91.
CAS
PubMed
Google Scholar
Foksinski M, Rozalski R, Guz J, Ruszkowska B, Sztukowska P, Piwowarski M, et al. Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. Free Radic Biol Med. 2004;37(9):1449–54.
CAS
PubMed
Google Scholar
Haklar G, Sayin-Ozveri E, Yuksel M, Aktan AO, Yalcin AS. Different kinds of reactive oxygen and nitrogen species were detected in colon and breast tumors. Cancer Lett. 2001;165(2):219–24.
CAS
PubMed
Google Scholar
Guz J, Foksinski M, Siomek A, Gackowski D, Rozalski R, Dziaman T, et al. The relationship between 8-oxo-7,8-dihydro-2-deoxyguanosine level and extent of cytosine methylation in leukocytes DNA of healthy subjects and in patients with colon adenomas and carcinomas. Mutat Res. 2008;640(1–2):170–3.
CAS
PubMed
Google Scholar
Rainis T, Maor I, Lanir A, Shnizer S, Lavy A. Enhanced oxidative stress and leucocyte activation in neoplastic tissues of the colon. Dig Dis Sci. 2007;52(2):526–30.
PubMed
Google Scholar
Suzuki K, Ito Y, Wakai K, Kawado M, Hashimoto S, Toyoshima H, et al. Serum oxidized low-density lipoprotein levels and risk of colorectal cancer: a case-control study nested in the Japan Collaborative Cohort Study. Cancer Epidemiol Biomark Prev. 2004;13(11):1781–7.
CAS
Google Scholar
Murrell TG. Epidemiological and biochemical support for a theory on the cause and prevention of breast cancer. Med Hypotheses. 1991;36(4):389–96.
CAS
PubMed
Google Scholar
Brown NS, Jones A, Fujiyama C, Harris AL, Bicknell R. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res. 2000;60(22):6298–302.
CAS
PubMed
Google Scholar
Sipe HJ Jr, Jordan SJ, Hanna PM, Mason RP. The metabolism of 17 beta-estradiol by lactoperoxidase: a possible source of oxidative stress in breast cancer. Carcinogenesis. 1994;15(11):2637–43.
CAS
PubMed
Google Scholar
Arnold RS, He J, Remo A, Ritsick D, Yin-Goen Q, Lambeth JD, et al. Nox1 expression determines cellular reactive oxygen and modulates c-fos-induced growth factor, interleukin-8, and Cav-1. Am J Pathol. 2007;171(6):2021–32.
CAS
PubMed Central
PubMed
Google Scholar
Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, et al. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate. 2005;62(2):200–7.
CAS
PubMed
Google Scholar
Brar SS, Corbin Z, Kennedy TP, Hemendinger R, Thornton L, Bommarius B, et al. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol. 2003;285(2):C353–69.
CAS
PubMed
Google Scholar
Kumar B, Koul S, Khandrika L, Measchan RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008;68:1777–85.
CAS
PubMed
Google Scholar
Veeramani S, Yuan TC, Lin FF, Lin MF. Mitochondrial redox signaling by p66Shc in involved in regulating androgenic growth stimulation of human prostate cancer cell. Oncogene. 2008;27(37):5057–68.
CAS
PubMed Central
PubMed
Google Scholar
WHO World cancer Report 2008. In: Boyle P, Levin B, editors. Lung cancer, 12. Chapter 5.10.
Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health. 2008;11(1):1–15.
CAS
Google Scholar
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.
PubMed
Google Scholar
Hoagland LF 4th, Campa MJ, Gottlin EB, Herndon 2nd JE, Patz Jr EF. Haptoglobin and posttranslational glycan-modified derivatives as serum biomarkers for the diagnosis of nonsmall cell lung cancer. Cancer. 2007;110(10):2260–2268.
Pastora MD, Nogala A, Molina-Pineloa S, Meléndeza R, Salinasa A, González De la Penaa M, et al. Identification of proteomic signatures associated with lung cancer and COPD. J Proteomics. 2013;89:227–37.
Google Scholar
Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2007;57:43–6.
PubMed
Google Scholar
Wynder EL, Goldsmith R. The epidemiology of bladder cancer: a second look. Cancer. 1977;40:1246–68.
CAS
PubMed
Google Scholar
Opanuraks J, Boonla C, Saelim C, Kittikowit W, Sumpatanukul P, Honglertsakula C, et al. Elevated urinary total sialic acid and increased oxidative stress in patients with bladder cancer. Asian Biomedicine. 2010;4(5):703–10.
CAS
Google Scholar
Opanuraks J, Boonla C, Saelim C, Kittikowit W, Sumpatanukul P, Honglertsakula C, Tosukhowong P. Elevated urinary total sialic acid and increased oxidative stress in patients with bladder cancer. Asian Biomedicine. 2010;4(5):703–10.
CAS
Google Scholar
Soini Y, Haapasaari KM, Vaarala MH, Turpeenniemi-Hujanen T, Karja V, Karihtala P. 8-hydroxydeguanosine and nitrotyrosine are prognostic factors in urinary bladder carcinoma. Int J Clin Exp Pathol. 2011;4(3):267–75.
PubMed Central
PubMed
Google Scholar
Eijan AM, Piccardo I, Riveros MD, Sandes EO, Porcella H, Jasnis MA, et al. Nitric oxide in patients with transitional bladder cancer. J Surg Oncol. 2002;81:203–8.
CAS
PubMed
Google Scholar
Gecit I, Aslan M, Gunes M, Pirincci N, Esen R, Demir H, et al. Serum prolidase activity, oxidative stress, and nitric oxide levels in patients with bladder cancer. J Cancer Res Clin Oncol. 2012;138(5):739–43.
CAS
PubMed Central
PubMed
Google Scholar
Ellidag HY, Eren E, Aydın O, Akgol E, Yalcınkaya S, Sezer C, et al. Ischemia Modified Albumin Levels and Oxidative Stress in Patients with Bladder Cancer. Asian Pacific J Cancer Prev. 2013;14(5):2759–63.
Google Scholar
Yılmaz IA, Akçay T, Çakatay U, Telci A, Ataus S, Yalcin V. Relation between bladder cancer and protein oxidation. ˙. Int Urol Nephrol. 2003;35(3):345–50.
PubMed
Google Scholar
DeMarchi E, B Faldassari, Bononi A, Wieckowski MR, Pinton P. Oxidative Stress in Cardiovascular Diseases and Obesity: Role of p66Shc and Protein Kinase C Oxidative Medicine and Cellular Longevity. 2013;1-11. Review.
Yin Y, Pastrana JL, Li X, Huang X, Mallilankaraman K, Choi ET, et al. Inflammasomes: sensors of metabolic stresses for vascular inflammation. Front Biosci. 2013;18:638–49.
CAS
Google Scholar
Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–26.
CAS
PubMed
Google Scholar
Papaharalambus CA, Griendling KK. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med. 2007;17(2):48–54.
CAS
PubMed Central
PubMed
Google Scholar
Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest. 1996;98(11):2572–9.
CAS
PubMed Central
PubMed
Google Scholar
Barnoya J, Glantz SA. Cardiovascular effects of secondhand smoke: nearly as large as smoking. Circulation. 2005;111(20):2684–98.
PubMed
Google Scholar
Yang Z, Ming XF. Recent advances in understanding endothelial dysfunction in atherosclerosis. Clin Med Res. 2006;4(1):53–65.
PubMed Central
PubMed
Google Scholar
Botto N, Rizza A, Colombo MG, Mazzone AM, Manfredi S, Masetti S, et al. Evidence for DNA damage in patients with coronary artery disease. Mutat Res. 2001;493(1–2):23–30.
CAS
PubMed
Google Scholar
Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 2013;3:1–6.
Google Scholar
Mercer JR, Cheng KK, Figg N, Gorenne I, Mahmoudi M, Griffin J, et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome novelty and significance. Circ Res. 2010;107:1021–31.
CAS
PubMed Central
PubMed
Google Scholar
A global brief on hypertension. World health day 2013. WHO.
Zalba G, Jose GS, Moreno MU, Fortuno MA, Fortuno A, Beaumont FJ, et al. Oxidative stress in arterial hypertension role of NAD(P)H oxidase. Hypertension. 2001;38(6):1395–9.
CAS
PubMed
Google Scholar
Dzau VJ. Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension. 2001;37:1047–52.
CAS
PubMed
Google Scholar
Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44(3):248–52.
CAS
PubMed
Google Scholar
Touyz RM. Reactive oxygen species and angiotensin II signaling in vascular cells: implications in cardiovascular disease. Braz J Med Biol Res. 2004;37(8):1263–73.
CAS
PubMed
Google Scholar
Hashim Z, Zarina S. Osmotic stress induced oxidative damage: Possible mechanism of cataract formation in diabetes. J Diabetes Complicat. 2012;26(4):275–9.
PubMed
Google Scholar
Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY. Global data on blindness. Bull World Health Organ. 1995;73(1):115–21.
CAS
PubMed Central
PubMed
Google Scholar
Nagai N, Fukuhata T, Ito Y. Effect of magnesium deficiency on intracellular ATP Levels in human lens epithelial cells. Biol Pharm Bull. 2007;30(1):6–10.
CAS
PubMed
Google Scholar
Beebe DC, Holekamp NM, Shui YB. Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res. 2010;44(3):155–65.
CAS
PubMed Central
PubMed
Google Scholar
Berthoud VM, Beyer EC. Forum review article oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal. 2009;11(2):339–53.
CAS
PubMed Central
PubMed
Google Scholar
Bhuyan KC, Bhuyan DK, Podos SM. Lipid peroxidation in cataract of the human. Life Sci. 1986;38(16):1463–71.
CAS
PubMed
Google Scholar
Gupta SK, Trivedi D, Srivastava S, Joshi S, Halder N, Verma SD. Lycopene attenuates oxidative stress induced experimental cataract development: an in vitro and in vivo study. Nutrition. 2003;19(9):794–9.
CAS
PubMed
Google Scholar
Boettner EH, Walter JR. Transmission of the ocular media. GPO Invest Ophthalmol Vis Sci. 1962;1:776–83.
Google Scholar
Krishna CM, Uppuluri S, Riesz P, Zigler JS Jr, Balasubramian D. A study of the photodynamic efficiencies of some eye lens constituents. Photochem Photobiol. 1991;54(1):51–8.
CAS
PubMed
Google Scholar
Dilsiz N, Olcucu A, Atas M. Determination of calcium, sodium, potassium and magnesium concentrations in human senile cataractous lenses. Cell Biochem Funct. 2000;18(4):259–62.
CAS
PubMed
Google Scholar
David LL, Azuma M, Shearer TR. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. Invest Ophthalmol Vis Sci. 1994;35(3):785–93.
CAS
PubMed
Google Scholar
Spector A, Garner WH. Hydrogen peroxide and human cataract. Exp Eye Res. 1981;33(6):673–81.
CAS
PubMed
Google Scholar
Hapeta B, Koczy B, Fitowska A, Dobrakowski M, Kasperczyk A, Ostałowska A, et al. Metabolism and protein transformations in synovial membrane of a knee joint in the course of rheumatoid arthritis and degenerative arthritis. Pol Orthop Traumatol. 2012;77:53–8.
PubMed
Google Scholar
Stamp LK, Khalilova I, Tarr JM, Senthilmohan R, Turner R, Haigh RC, et al. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology (Oxford). 2012;51(10):1796–803.
CAS
Google Scholar
Desai PB, Manjunath S, Kadi S, Chetana K, Vanishree J. Oxidative stress and enzymatic antioxidant status in rheumatoid arthritis: a case control study. Eur Rev Med Pharmacol Sci. 2010;14(11):959–67.
PubMed
Google Scholar
Grover HS, Gaba N, Gupta A, Marya CM. Rheumatoid arthritis: a review and dental care considerations. Nepal Med Coll J. 2011;13(2):74–6.
CAS
PubMed
Google Scholar
De Pablo P, Dietrich T, McAlindon TE. Association of periodontal disease and tooth loss with rheumatoid arthritis in the US population. J Rheumatol. 2008;35(1):70–6.
PubMed
Google Scholar
Vasanthi P, Nalini G, Rajasekhar G. Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis. 2009;12(1):29–33.
PubMed
Google Scholar
Hitchon CA, El-Gabalawy HS. Review Oxidation in rheumatoid arthritis. Arthritis Res Ther. 2004;6(6):265–78.
PubMed Central
PubMed
Google Scholar
Grootveld M, Henderson EB, Farell A, Blake DR, Parkes HG, Haycock P. Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal lowmolecular-mass metabolites by proton-n.m.r. spectroscopy. Biochem J. 1991;273:459–67.
CAS
PubMed Central
PubMed
Google Scholar
Rowley D, Gutteridge JM, Blake D, Farr M, Halliwell B. Lipid peroxidation in rheumatoid arthritis: thiobarbituric acid-reactive material and catalytic iron salts in synovial fluid from rheumatoid patients. Clin Sci (London). 1984;66(6):691–5.
CAS
Google Scholar
Dai L, Lamb DJ, Leake DS. Evidence for oxidized low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radic Res. 2000;32(6):479–86.
CAS
PubMed
Google Scholar
Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38.
CAS
PubMed
Google Scholar
Dai L, Lamb DJ, Leake DS, Kus ML, Jones HW, Morris CJ, et al. Evidence for oxidised low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radic Res. 2000;32(6):479–86.
CAS
PubMed
Google Scholar
Costenbader KH, Karlson EW. Cigarette smoking and autoimmune disease: what can we learn from epidemiology? Lupus. 2006;15(11):737–45.
CAS
PubMed
Google Scholar
Kottova M, Pourova J, Voprsalova M. Oxidative stress and its role in respiratory diseases. Ceska Slov Farm. 2007;56(5):215–9.
CAS
PubMed
Google Scholar
Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: Executive summary of the GINA Dissemination Committee report. Allergy. 2004;59(5):469–78.
PubMed
Google Scholar
Chung KF. Role of inflammation in the hyper reactivity of the airways in asthma. Thorax. 1986;41:657–62.
CAS
PubMed Central
PubMed
Google Scholar
Barnes PJ. Reactive oxygen species and airway inflammation. Free Radic Biol Med. 1990;9(3):235–43.
CAS
PubMed
Google Scholar
Xiao M, Zhu T, Wang T, Wen FQ. Hydrogen-rich saline reduces airway remodeling via inactivation of NF-κB in a murine model of asthma. Eur Rev Med Pharmacol Sci. 2013;17(8):1033–43.
CAS
PubMed
Google Scholar
Tohyama Y, Kanazawa H, Fujiwara F, Hirata K, Fujimoto S, Yoshikawa J. Role of nitric oxide on airway microvascular permeability in patients with asthma. Osaka City Med J. 2005;51(1):1–9.
CAS
PubMed
Google Scholar
Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006;533(1–3):222–39.
CAS
PubMed
Google Scholar
Terada LS. Specificity in reactive oxidant signaling: Think globally, act locally. J Cell Biol. 2006;174(5):615–23.
CAS
PubMed Central
PubMed
Google Scholar
Fujisawa T. Role of oxygen radicals on bronchial asthma. Curr Drug Targets Inflamm Allergy. 2005;4(4):505–9.
CAS
PubMed
Google Scholar
Ozaras R, Tahan V, Turkmen S, Talay F, Besirli K, Aydin S, et al. Changes in malondialdehyde levels in bronchoalveolar fluid and serum by the treatment of asthma with inhaled steroid and beta2-agonist. Respirology. 2000;5(3):289–92.
CAS
PubMed
Google Scholar
Ahmad A, Shameem M, Husain Q. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med. 2012;7(4):226–32.
CAS
PubMed Central
PubMed
Google Scholar
Pobed’onna HP. Antioxidant protection, metabolites of nitrogen oxide on the forming of oxidative stress in patients with bronchial asthma. Lik Sprava. 2005;(5–6):36–40.