Advertisement

Indian Journal of Clinical Biochemistry

, Volume 30, Issue 1, pp 78–83 | Cite as

Hypolipidemic Activity of Cassia tora Seeds in Hyperlipidemic Rats

  • Vishnu Kumar Awasthi
  • Farzana Mahdi
  • Ramesh Chander
  • Ashok Kumar Khanna
  • Jitendra Kumar Saxena
  • Ranjana Singh
  • Abbas Ali Mahdi
  • Raj Kumar SinghEmail author
Original Article

Abstract

The hypolipidemic activity of Cassia tora (Chakvat, Chakunda) (Family: Caesalpiniaceae) seeds extract have been studied in two models of hyperlipidemia in rats. In an acute model, hyperlipidemia was induced by injecting a single dose of Triton WR-1339 (400 mg/kg, b.w.) intraperitonially in rats. Feeding with C. tora seed extract at the dose of 500 mg/kg, b.w. exerted significant lipid lowering effect as assessed by the reversal of plasma levels of total cholesterol, phospholipids, triglyceride and reactivation of post heparin lipolytic activity. In the chronic model, hyperlipidemia was induced by feeding with cholesterol rich-HFD in rats. The treatment with seeds extract of C. tora (500 mg/kg, b.w.) simultaneously for 15 days also caused lowering of lipid levels in plasma and liver following reactivation of plasma post heparin lipolytic activity and hepatic lipoprotein lipase activity in animals. The hypolipidemic activity of C. tora seeds was compared with a standard drug guggulipid (200 mg/kg, b.w.) in both models.

Keywords

Cassia tora seeds Triton model of hyperlipidemia Cholesterol rich-HFD Hypolipidemic agent PHLA Hepatic LPL activity Hepatic steatosis 

Notes

Acknowledgments

One of us (V.K.) is grateful to the Director, Central Drug Research Institute, Lucknow for experimental support and Era’s Lucknow Medical College & Hospital, Lucknow for financial support.

References

  1. 1.
    Warrier PK, Nambiar VPK, Ramankutty C. A text book of Indian medicinal plants, a compendium of 500 species. Orient Longman Private Limited: Chennai; 2001. 2:26.Google Scholar
  2. 2.
    Pawar HA, D’mello PM. Cassia tora Linn: an overview. Int J Pharmaceutical Sci Res. 2011;2(9):2286–91.Google Scholar
  3. 3.
    Chaurasia B, Dhakad RS, Dhakar VK, Jain PK. Preliminary phytochemical and pharmacological (Antidiabetic) screening of Cassia tora Linn. Int J of Pharm Life Sci. 2011;2(5):759–66.Google Scholar
  4. 4.
    Kee CH. The pharmacology of Chinese herbs. Boca Raton: CRC Press; 2001. p. 103.Google Scholar
  5. 5.
    Gupta R, Joshi P, Mohan V, Reddy KS, Yusuf S. Epidemiology and causation of coronary heart disease and stroke in India. Heart. 2008;94:16–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Mohammed K, Ali KM, Narayan V, Tandon N. Diabetes and coronary heart disease: current perspectives. Ind J Med Res. 2010;130:584–97.Google Scholar
  7. 7.
    Chattopadhyaya R, Pathak D, Jindal DP. Antihyperlipidemic agents. A review. Ind drugs. 1996;33:85–97.Google Scholar
  8. 8.
    Satyavati GV. Guggulipid: a promising hypolipedemic agent from gum guggul (Commiphora wightii). In: Economic and Medicinal Plant Research, editor. Plants and traditional medicine, vol. V. New York: Academic Press; 1991. p. 47–82.Google Scholar
  9. 9.
    Chander R, Khanna AK, Kapoor NK. Lipid lowering activity of guggulsterone from Commephora mukul in hyperlipidemic rats. Phytotherapy Res. 1996;10:508–11.CrossRefGoogle Scholar
  10. 10.
    Wing DR, Robinson DS. Clearing factor lipase in adipose tissue. Biochem J. 1968;29:1798–803.Google Scholar
  11. 11.
    Deeg R, Ziegenborn J. Kinetic enzymatic method for automated determination of cholesterol in serum. Clin Chem. 1983;29:1798–803.PubMedGoogle Scholar
  12. 12.
    Zilversmith DB, Davis DK. Micro determination of plasma phospholipids by trichloroacetic acid precipitation. J Lab Clin Med. 1950;35:155–60.Google Scholar
  13. 13.
    Buccolo G, David H. Quantitative determination of serum triglyceride by the use of enzymes. Clin Chem. 1973;19:476–80.Google Scholar
  14. 14.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem. 1951;183:265–72.Google Scholar
  15. 15.
    Woodson RF. Statistical methods for the analysis of biochemical data. Chichester: Wiley; 1957. p. 315.Google Scholar
  16. 16.
    Schurr PE, Schultz JR, Parkinson TM. Triton induced hyperlipidemia in rats as an animal model for screening of hypolipermic drugs. Lipids. 1972;7:68–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Nityanand S, Kapoor NK. Case history of guggulipid –A hypolipidemic agent. In Han BH, Han DS, Han YN, Wox WS (editors) Proceedings of the fifth Asian symposium on Medicinal plants and species, Bangkok; 1966. p. 171–182.Google Scholar
  18. 18.
    Kumar V, Khan MM, Khanna AK, Chander R, Mahdi F, Mahdi AA, Saxena JK, Singh RK. Lipid lowering activity of Anthocephalus indicus root in hyperlipidemic rats. Evid Based Complement Altern Med. 2010;7(3):317–22.CrossRefGoogle Scholar
  19. 19.
    Kumar V, Singh S, Khanna AK, Khan MM, Chander R, Mahdi F, Saxena JK, Singh S, Singh R, Singh RK. Hypolipidemic activity of Anthocephalus indicus (Kadam) in hyperlipidemic rats. Med Chem Res. 2008;17:152–8.CrossRefGoogle Scholar
  20. 20.
    Brown MS, Goldstein JL. A receptor mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Patil UK, Saraf S, Dixit VK. Hypolipidemic activity of seeds of Cassia tora Linn. J Ethnopharmacol. 2004;90:249–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Cho IJ, Lee C, Ha TY. Hypolipidemic effect of soluble fiber isolated from seeds of Cassia tora Linn, in rats fed a high cholesterol diet. J Agric Food Chem. 2007;55(4):1592–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Chandan D, Sujit D, Charan SD, Arnabaditya M, Dolley R. Cassia tora: phyto-pharmacological overview. Int J Res Ayurveda and Pharmacy. 2011;2(4):1162–74.Google Scholar
  24. 24.
    Deoda RS, Kadam PV, Shivatare RS, Narappanawar NS, Yadav KN, Patil MJ. Pharmacognostic and phytopharmacological profile of Cassia tora Linn: a review. Inventi impact: Planta Activa. 2012, Article ID-Inventi:ppa/132/12. http://www.inventi.in/Article/ppa/132/12.aspx. Accessed 15 April 2012.
  25. 25.
    Wilkinson RE, Hardcastle WS. Comparative fatty acid contents of various organs of Cassia tora. Bot Gaz (Chicago). 1969;130:254.CrossRefGoogle Scholar
  26. 26.
    Acharya TK, Chatterjee IB. Isolation of chrysophanic acid-9-anthrone, the major antifungal principle of Cassia tora. Lloydia. 1975;38:213.Google Scholar
  27. 27.
    Choi JS, Lee HJ, Park KY. In vitro antimutagenic effect of alateranin and rubrofusarin gentiobioside from roasted Cassia tora. Nat Prod Sci. 1998;4(2):100–4.Google Scholar
  28. 28.
    Hatani T, Hiroshi U, Hidey KI, Sumico S, Tomofusa T, Takashi Y. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin resistant Staphylococcus aureus. Chem Pharm Bull. 1999;47(8):1121–7.CrossRefGoogle Scholar
  29. 29.
    Lee GY, Jang DS, Lee YM, Kim JM, Kim JS. Naphthopyrone glucosides from the seeds of Cassia tora with inhibitory activity on advanced glycation end products (AGEs) formation. Arch Pharm Res. 2006;29(7):587–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Ignacimuthu C, Dhanasekaran M, Agastian P. Potential hepatoprotective activity of ononitol monohydrate isolated from Cassia tora L on carbon tetrachloride induced hepatotoxicity in Wistar Rats. Phytomedicine. 2009;16:891–5.PubMedCrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2014

Authors and Affiliations

  • Vishnu Kumar Awasthi
    • 1
  • Farzana Mahdi
    • 1
  • Ramesh Chander
    • 1
  • Ashok Kumar Khanna
    • 2
  • Jitendra Kumar Saxena
    • 2
  • Ranjana Singh
    • 3
  • Abbas Ali Mahdi
    • 3
  • Raj Kumar Singh
    • 4
    Email author
  1. 1.Department of BiochemistryEra’s Lucknow Medical College & HospitalLucknowIndia
  2. 2.Division of BiochemistryCentral Drug Research InstituteLucknowIndia
  3. 3.Department of BiochemistryKing George’s Medical UniversityLucknowIndia
  4. 4.Department of BiochemistryShri Guru Ram Rai Institute of Medical & Health SciencesDehradunIndia

Personalised recommendations