Indian Journal of Clinical Biochemistry

, Volume 30, Issue 1, pp 72–77 | Cite as

Antidyslipidemic Effect of Ocimum sanctum Leaf Extract in Streptozotocin Induced Diabetic Rats

  • Ishrat Husain
  • Ramesh Chander
  • Jitendra Kumar Saxena
  • Abbas Ali Mahdi
  • Farzana MahdiEmail author
Original Article


The antidyslipidemic activity of Ocimum sanctum leaf extract was studied in streptozotocin induced diabetic rats. In this model, there was significant increase in plasma markers of diabetic-dyslipidemia following diminution of lipid metabolizing enzymes. Oral administration of leaf extract (500 mg/kg b.w.p.o.) for 15 days resulted in significant decrease in diabetogenic and dyslipidemia parameters; namely blood glucose, glycosylated hemoglobin, lipid peroxide, free fatty acids, small dense low density lipoprotein, lipid and protein components of plasma lipoproteins, adipose and liver. The regulation of lipids was accompanied by stimulation of postheparin lipolytic activity, reactivation of lecithin cholesterol acyl transferase and hepatic lipoprotein lipase enzymes. The results of the present study demonstrated antidyslipidemic and antioxidant activities in leaf extract of O. sanctum which could be used in prevention of diabetic-dyslipidemia and related complications.


Ocimum sanctum Anti-dyslipidemic agent Natural antioxidants Postheparin lipolytic activity Streptozotocin induced-diabetes Hypoglycemic agent 



The author is thankful to Indian Council of Medical Research, New Delhi for financial support vide project sanction No. 45/37/2009/BMS/TRM, dated 22/12/2009.


  1. 1.
    NIIR Board. Ocimum sanctum. In: National Institute of Industrial Research (NIIR Board) India, editor. Compendium of Medicinal Plants. India: NIIR; 2004. p. 320. doi:,,79,a,15,0,3e8/index.html.Google Scholar
  2. 2.
    Singh U, Singh S, Kochhar A. Therapeutic potential of antidiabetic nutraceuticals. Phytopharmacology. 2012;2(1):144–69.Google Scholar
  3. 3.
    Pandey G, Madhuri S. Pharmacological activities of Ocimum sanctum (tulsi): a review. Inter J Pharmac Sci Rev Res. 2010;5:61–6.Google Scholar
  4. 4.
    Singh S, Taneja M, Majumdar DK. Biological activities of Ocimum sanctum L. fixed oil: an overview. Indian J Exp Biol. 2007;45:403–12.PubMedGoogle Scholar
  5. 5.
    Mohammed K, Ali KM, Narayan V, Tandon N. Diabetes and coronary heart disease: current perspectives. Indian J Med Res. 2010;132:584–97.Google Scholar
  6. 6.
    Kershnar AK, Daniels SR, Imperatore G, Palla SL, Petitti DB, Pettitt DJ, Marcovina S, Dolan LM, Hamman RF, Liese AD, Daniels SR, Imperatore G, Palla SL, Petitti DB, Pettitt DJ, Marcovina S, Dolan LM, Hamman RF, Liese AD, Pihoker C, Rodriguez BL. Lipid abnormalities are prevalent in youth with type 1 and type 2 diabetes: the SEARCH for diabetes in youth study. J Pediatr. 2006;149:314–9.PubMedCrossRefGoogle Scholar
  7. 7.
    American Diabetes Association. Management of dyslipidemia in adults with diabetes (position statement). Diabetes Care. 2003;26:S83–6.CrossRefGoogle Scholar
  8. 8.
    Singh RK, Sharma B. Certain traditional Indian plants and their therapeutic applications: a review. VRI Phytomed. 2013;1(1):1–11.Google Scholar
  9. 9.
    Jaiswal D, Rai PK, Mehta S, Chatterji S, Shukla S, Rai DK, Sharma G, Sharma B, Watal G. Role of drumstick leaves (Moringa oleifera) in regulation of diabetes-induced oxidative stress Asian Pacific. J Tropical Med. 2013;6:426–32.Google Scholar
  10. 10.
    Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi Sh, Farhangi A, Allah Verdi A, Mofidian SMA, Lame RB. Induction of diabetes by streptozotocin in rats. Indian J Clin Biochem. 2007;22(2):60–4.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Goldstein DE, Parker KM, England JD, Wiedmeyer HM, Rawlings SS, Randall H, Randier L, Simonds JF, Russell P. Clinical application of glycosylated hemoglobin measurement. Diabetes. 1982;31(Suppl 3):70–8.CrossRefGoogle Scholar
  12. 12.
    Hirano T, Ito Y, Saegusa H, Yoshino G. A novel and simple method for quantification of small dense LDL. J Lipid Res. 2003;44:2193–201.PubMedCrossRefGoogle Scholar
  13. 13.
    Kumar V, Singh P, Chander R, Mahdi F, Singh S, Singh R, Khanna AK, Saxena JK, Mahdi AA, Singh VK. Hypolipidemic activity of Hibiscus rosa-sinensis root in rats. Indian J Biochem Biophys. 2009;46(6):507–10.PubMedGoogle Scholar
  14. 14.
    Burnstein M, Legmann P. Lipoprotein precipitation. In: Clarkson TB, editor. Monographs on atherosclerosis, vol. II. London: S. Kargar; 1982. p. 76–83.Google Scholar
  15. 15.
    Kumar V, Mahdi F, Chander R, Singh R, Mahdi AA, Khanna AK, Bhatt S, Kushwaha RS, Jawad K, Saxena JK, Singh RK. Hypolipidemic and antioxidant activity of Anthocephalus indicus (Kadam) root extract. Indian J Biochem Biophys. 2010;47(2):104–9.PubMedGoogle Scholar
  16. 16.
    Park Y, Wu J, Zhang H, Wang Y, Zhang C. Vascular dysfunction in Type 2 diabetes: emerging targets for therapy. Expert Rev Cardiovasc Ther. 2009;7(3):209–13.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Das S. Current understanding of risk factors and mechanisms in the pathogenesis of macrovascular disease in diabetes mellitus. Indian Acad Clin Med. 2001;2(3):214–21.Google Scholar
  18. 18.
    Goldberg IJ. Clinical Review 124; diabetic dyslipidemia :causes and consequences. J Clin Endocrinol Metabol. 2001;86:965–71.CrossRefGoogle Scholar
  19. 19.
    Suanarunsawat T, Ayutthaya WDN, Songsak T, Thirawarapan S, Poungshompoo S. Lipid-lowering and antioxidative activities of aqueous extracts of Ocimum sanctum L. leaves in rats fed with a high-cholesterol diet. Oxid Med Cell Longev. 2011;. doi: 10.1155/2011/962025.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Vats V, Yadav SP, Grover JK. Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. J Ethnopharmacol. 2004;90:155–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel Wahab YH. Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic beta-cells. J Endocrinol. 2006;189(1):127–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Mehta S, Rai PK, Rai DK, Rai NK, Rai AK, Bicanic D, Sharma B, Watal G. LIBS-based detection of antioxidant elements in seeds of Emblica officinalis. Food Biophys. 2010;5(3):186–92.CrossRefGoogle Scholar
  23. 23.
    Sharma RK, Chatterji S, Rai DK, Mehta S, Rai PK, Singh RK, Watal G, Sharma B. Antioxidant activities and phenolic contents of the aqueous extracts of some Indian medicinal plants. J Med Plants Res. 2009;3(11):944–8.Google Scholar
  24. 24.
    Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine. 2000;7(1):7–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Pandey G. An overview on certain anticancer natural products. J Pharm Res. 2009;2(12):1799–1803. ISSN-0974-6943.;jsessionid=5F7778EADAE7E0B28D0D470953E41206.Google Scholar
  26. 26.
    Suanarunsawat T, Ayutthaya WDN, Songsak T, Thirawarapan S, Poungshompoo S. Antioxidant and lipid lowering effects of essential oils extracted from Ocimum sanctum leaves in rats fed with a high cholesterol diet. J Clin Biochem Nutr. 2010;46:52–9.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2014

Authors and Affiliations

  • Ishrat Husain
    • 1
  • Ramesh Chander
    • 1
  • Jitendra Kumar Saxena
    • 2
  • Abbas Ali Mahdi
    • 3
  • Farzana Mahdi
    • 1
    Email author
  1. 1.Department of BiochemistryEra’s Lucknow Medical College & HospitalLucknowIndia
  2. 2.Division of BiochemistryCentral Drug Research InstituteLucknowIndia
  3. 3.Department of BiochemistryKing George’s Medical UniversityLucknowIndia

Personalised recommendations