Skip to main content

Advertisement

Log in

In-vitro Behavior of Human Umbilical Cord Blood Stem Cells Towards Serum Based Minimal Cytokine Growth Conditions

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

We tried here to optimize the proliferation of both Hematopoietic and Mesenchymal stem cells of Umbilical Cord blood in minimal cytokine growth condition. Failing to get good results of expansion of non-adherent Hematopoietic Total Nucleated Cells and adherent Fibroblastic Mesenchymal Stem Cells derived from 10–12 ml of collected Cord blood, we designed the further experimental study by increasing the volume of Cord blood sample up to 65–70 ml. We harvested the non-adherent as well as adherent fraction separately derived from the primary culture of Umbilical Cord blood stem cells under the influence of growth promoting Cytokines or Growth Factors. The proliferation study was conducted by taking different combinations of two hematopoietic growth stimulatory Cytokines like stem cell factor (SCF) and Fms like tyrosine kinase-3Ligand (Flt3L) at concentrations (10 ng/ml, 100 ng/ml) while we preferred Mesenchymal specific growth factor i.e. basic Fibroblast growth factor (FGF-β) at its 10 ng/ml concentration for adherent cells to get optimal results. The Hematopoietic and Fibroblast Colony forming abilities of the expanded stem cells were performed through Colony Forming Unit assay. Culture Medium containing cytokine combination like SCF 100 ng/ml with Flt3L 10 ng/ml was found to be optimal for the proliferation of hematopoietic stem cells. But the number of hematopoietic colonies like Erythroid colonies generated were less in case of media supplemented with SCF & Flt3L while more number of Myeloid colonies were observed in Growth factor supplemented media in comparison to the control one. The FGF-β supplemented media successfully enhanced the proliferation of Mesenchymal Stem Cells and exhibited its efficient Fibroblast colony forming ability. Our experimental study supports the minimal utilization of cytokines for haematopoietic and mesenchymal stem cell proliferation which may help in future safe Cord blood stem cell infusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim SY, Park SY, Kim JM, Kim JW, Kim MY, Yang JH, et al. Differentiation of endothelial cells human umbilical cord blood AC133-CD14+ cells. Ann Hematol. 2005;84(7):417–22.

    Article  CAS  PubMed  Google Scholar 

  2. Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant. 2001;7(11):581–8.

    Article  CAS  PubMed  Google Scholar 

  3. Broxmeyer HE. Biology of cord blood cells and future prospects for enhanced clinical benefit. Cytotherapy. 2005;7(3):209–18.

    Article  CAS  PubMed  Google Scholar 

  4. Sutherland DR, Keating A. The CD34 antigen: structure, biology and potential clinical applications. J Hematother. 1992;1:115–29.

    Article  CAS  PubMed  Google Scholar 

  5. Bordeaux-Rego P, Luzo AC, Costa FF, Saad ST, Crosara Alberto DP. Both IL-3 and IL-6 are necessary for better ex vivo expansion of CD133+ cells from Umbilical Cord blood. Stem Cells Dev. 2010;19(3):413–22.

    Article  CAS  PubMed  Google Scholar 

  6. Kadereit S, Deeds LS, Haynesworth SE, Koc ON, Kozik MM, Szekely E, et al. Expansion of LTC-ICs maintenance of p21 and BCL-2 expression in cord blood CD34+/CD38− early progenitors cultured over human MSCs as feeder layer. Stem Cells. 2002;20(6):573–82.

    Article  CAS  PubMed  Google Scholar 

  7. Lam AC, Li K, Zhang XB, Li CK, Fok TF, Chang AM, et al. Preclinical ex vivo expansion of cord blood hematopoietic stem and progenitor cells: duration of culture; the media, serum supplements, and growth factors used; and engraftment in NOD/SCID mice. Transfusion. 2001;41(12):1567–76.

    Article  CAS  PubMed  Google Scholar 

  8. Levac K, Karanu F, Bhatia M. Identification of growth factor conditions that reduce ex vivo cord blood progenitor expansion but do not alter human repopulating cell function in vivo. Haematologica. 2005;90:166–72.

    CAS  PubMed  Google Scholar 

  9. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood or adipose tissue. Stem cells. 2006;24(5):1294–301.

    Article  CAS  PubMed  Google Scholar 

  10. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult Bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003;121(2):368–74.

    Article  PubMed  Google Scholar 

  11. Pozzi S, Lisini D, Podestà M, Bernardo ME, Sessarego N, Piaggio G, et al. Donor multipotent mesenchymal stem cells may engraft in paediatric patients given either cord blood or bone marrow transplantation. Exp Haematol. 2006;34(7):934–42.

    Article  CAS  Google Scholar 

  12. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669–75.

    Article  CAS  PubMed  Google Scholar 

  13. Predikogianni C, Dimitriou H, Stiakaki E, Martimianaki G, Kalmanti M. Could cord blood be a source of mesenchymal stromal cells for clinical use? Cytotherapy. 2008;10(5):452–9.

    Article  Google Scholar 

  14. Solves P, Mirabet V, Planelles D, Carbonell-Uberos F, Roig R. Influence of volume reduction and cryopreservation methodologies on quality of thawed umbilical cord blood units for transplantation. Cryobiology. 2008;56(2):152–8.

    Article  CAS  PubMed  Google Scholar 

  15. Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22(4):625–34.

    Article  PubMed  Google Scholar 

  16. Rebelatto CK, Aguiar AM, Moretão MP, Senegaglia AC, Hansen P, Barchiki F, et al. Dissimilar differentiate on of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood). 2008;233(7):901–13.

    Article  CAS  Google Scholar 

  17. Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology. 1997;138(10):4456.

    CAS  PubMed  Google Scholar 

  18. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Haematol. 2000;28(6):707–15.

    Article  CAS  Google Scholar 

  19. Mastrogiacomo M, Cancedda R, Quarto R. Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthr Cartil. 2001;9(Suppl A):S36.

    Article  PubMed  Google Scholar 

  20. Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, et al. Ex vivo enrichment of mesenchymal cell progenitors fibroblast growth factor-2. Exp Cell Res. 2003;287(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  21. Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun. 2001;288(2):413–9.

    Article  CAS  PubMed  Google Scholar 

  22. Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF. FGF-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone marrow derived mesenchymal stem cells. Tissue Eng Part A. 2010;16(3):1009–19.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Shetty P, Cooper K, Viswanathan C. Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian J Transfus Sci. 2010;4(1):14–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. McNiece I. Delivering cellular therapies: lessons learned from ex vivo culture and clinical applications of hemato poietic cells. Semin Cell Dev Biol. 2007;18(6):839–45.

    Article  CAS  PubMed  Google Scholar 

  25. Vial T, Descotes J. Clinical toxicity of cytokines used as hemopoietic growth factors. Drug Saf. 1995;13:371–406.

    Article  CAS  PubMed  Google Scholar 

  26. Briddell RA, Kern BP, Zilm KL, Stoney GB, McNiece IK. Purification of CD34+ cells is essential for optimal ex vivo expansion of umbilical cord blood cells. J Hematother. 1997;6(2):145–50.

    Article  CAS  PubMed  Google Scholar 

  27. Dao MA, Creer MH, Nolta JA, Verfaillie CM. Biology of umbilical cord blood progenitors in bone marrow niches. Blood. 2007;110(1):74–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chivu M, Diaconu CC, Bleotu C, Alexiu I, Brasoveanu L, Cernescu C. The comparison of different protocols for expansion of umbilical-cord blood hematopoietic stem cells. J Cell Mol Med. 2004;8(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  29. da Silva CL, Goncalves R, Crapnell KB, Cabral JM, Zanjani ED, Almeida-Porada G. A human stromal-based serum-free culture system supports the ex vivo expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells. Exp Hematol. 2005;33(7):828–35.

    Article  PubMed  Google Scholar 

  30. Guenechea G, Segovia JC, Albella B, Lamana M, Ramirez M, Regidor C, et al. Delayed engraftment of nonobese diabetic/severe combined immunodeficient mice transplanted with ex vivo-expanded human CD34(+) cord blood cells. Blood. 1999;93(3):1097–105.

    CAS  PubMed  Google Scholar 

  31. Jang YK, Jung DH, Jung MH, Kim DH, Yoo KH, Sung KW, et al. Mesenchymal stem cells feeder layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells. Ann Hematol. 2006;85(4):212–25.

    Article  PubMed  Google Scholar 

  32. Jiang XS, Chai C, Zhang Y, Zhuo RX, Mao HQ, Leong KW. Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34+ cells. Biomaterials. 2006;27(13):2723–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Martin-Rendon E, Hale SJ, Ryan D, Baban D, Forde SP, Roubelakis M, et al. Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells. 2007;25(4):1003–12.

    Article  CAS  PubMed  Google Scholar 

  34. McNiece IK, Almeida-Porada G, Shpall EJ, Zanjani E. Ex vivo expanded cord blood cells provide rapid engraftment in fetal sheep but lack long-term engrafting potential. Exp Hematol. 2002;30(6):612–6.

    Article  PubMed  Google Scholar 

  35. McNiece I, Kubegov D, Kerzic P, Shpall EJ, Gross S. Increased expansion and differentiation of cord blood products using a two-step expansion culture. Exp Hematol. 2000;28(10):1181–6.

    Article  CAS  PubMed  Google Scholar 

  36. Oswald J, Steudel C, Salchert K, Joergensen B, Thiede C, Ehninger G, et al. Gene-expression profiling of CD34 hematopoietic cells expanded in a collagen I matrix. Stem Cells. 2006;24(3):494–500.

    Article  CAS  PubMed  Google Scholar 

  37. Robinson SN, Ng J, Niu T, Yang H, McMannis JD, Karandish S, et al. Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transp. 2006;37(4):359–66.

    Article  CAS  Google Scholar 

  38. Shpall EJ, Quinones R, Giller R, Zeng C, Baron AE, Jones RB, et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transp. 2002;8(7):368–76.

    Article  Google Scholar 

  39. Wang JF, Wang LJ, Wu YF, Xiang Y, Xie CG, Jia BB, et al. Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34(+) hema-topoietic stem cells and for chondrogenic differentiation. Haematologica. 2004;89(7):837–44.

    CAS  PubMed  Google Scholar 

  40. Zheng Y, Sun A, Han ZC. Stem cell factor improves SCID-repopulating activity of human umbilical cord blood-derived hematopoietic stem/progenitor cells in xenotransplanted NOD/SCID mouse model. Bone Marrow Transp. 2005;35:137–42.

    Article  CAS  Google Scholar 

  41. De Felice L, Di Pucchio T, Breccia M, Agostini F, Mascolo MG, Guglielmi C, et al. Flt3L enhances the early stem cell compartment after ex vivo amplification of umbilical cord blood CD34+ cells. Bone Marrow Transp. 1998;22(Suppl 1):S66–7.

    Google Scholar 

  42. De Felice L, Di Pucchio T, Grazia Mascolo M, Agostini F, Breccia M, Guglielmi C, et al. Flt3L induces the ex-vivo amplification of umbilical cord blood committed progenitors and early stem cells in short-term cultures. British J Haematol. 1999;106:133–41.

    Article  Google Scholar 

  43. Loken MR. Immunofluorescence techniques in flow cytometry and sorting. 2nd ed ed. New York: Wiley; 1990. p. 341–53.

    Google Scholar 

  44. Mantri S, Mohapatra PC. In-vitro study of proliferation in short term cultured Umbilical Cord blood stem cells. Orissa Med J. 2013;33(1):108–11.

    Google Scholar 

  45. Canque B, Camus S, Dalloul A, Kahn E, Yagello M, Dezutter-Dambuyant C, et al. Characterization of dendritic cell differentiation pathways from cord blood CD34+CD7+CD45RA+ hematopoietic progenitor cells. Blood. 2000;96:3748–56.

    CAS  PubMed  Google Scholar 

  46. McKenna HJ, Stocking KL, Miller RE, Brasel K, Smedt TD, Maraskovsky E, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood. 2000;95:3489–97.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the grant from Department of Science & Technology (DST), Govt. of India.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santwana Mantri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantri, S., Mohapatra, P.C. In-vitro Behavior of Human Umbilical Cord Blood Stem Cells Towards Serum Based Minimal Cytokine Growth Conditions. Ind J Clin Biochem 29, 279–289 (2014). https://doi.org/10.1007/s12291-013-0346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-013-0346-8

Keywords

Navigation