Skip to main content

Advertisement

Log in

Analysis of Modification of Liver Proteome in Diabetic Rats by 2D Electrophoresis and MALDI-TOF-MS

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The uncontrolled hyperglycemia can lead to disturbances in the cell structure and functions of organs. This study was performed to analyze the “differential proteome” change in rat liver associated with diabetes mellitus in relation to effects of an anti-diabetic herb, Cynodon dactylon leaf extracts. Rats were intraperitoneally injected with alloxan (150 mg/kg/bw) and treated with C. dactylon leaf extracts (450 mg/kg/bw/day/orally). The liver proteins were subjected to proteome analysis using the advanced technologies i.e., 2D electrophoresis (2-DE) and mass spectrometry. Comparison of 2-DE protein distribution profiles among the livers from normal, alloxan-induced diabetic rats and alloxan-induced diabetic rats treated with C. dactylon leaves identified three proteins that were up-regulated in alloxan-induced diabetic rats i.e., nucleophosmin, l-xylulose reductase and carbonic anhydrase III which are known to be mainly involved in ribosome biogenesis, centrosome duplication, cell proliferation, tumor suppression, glucose metabolism, osmo-regulation, water–CO2 balance and acid–base balance. These results help us to understand the elucidation of molecular mechanism connected to liver function and insulin associated with diabetes mellitus. These identified proteins were primarily involved in cell proliferation and homoeostasis of liver tissues upon the treatment with C. dactylon leaf extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bnouham M, Ziyyat A, Mekhfi H. Medicinal plants with potential antidiabetic activity—a review of 10 years of herbal medicine research (1990–2000). Int J Diabetes Metab. 2006;4:11–25.

    Google Scholar 

  2. Grover JK, Vats V. Shifting paradigm from conventional to alternate medicine, an introduction on traditional Indian medicine. Asia Pac Biotech News. 2001;5:28–32.

    Article  Google Scholar 

  3. Santosh KS, Prashant KR, Dolly J. Evidence-based critical evaluation of glycemic potential of Cynodon dactylon. Evid Based Complement Alternat Med. 2008;5:415–20.

    Article  Google Scholar 

  4. Uncini MRE, Tomei PE. Ethnopharmacobotanical studies of the Tuscan Archipelago. J Ethnopharmacol. 1999;65:181–202.

    Article  Google Scholar 

  5. Auddy B, Ferreira M, Blasina F. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J Ethnopharmacol. 2003;84:131–8.

    Article  PubMed  CAS  Google Scholar 

  6. Yesilada E, Sezik E, Honda G. Traditional medicine in Turkey IX: folk medicine in north-west Anatolia. J Ethnopharmacol. 1999;64:195–210.

    Article  PubMed  CAS  Google Scholar 

  7. Leporatti ML, Corradi L. Ethnopharmacobotanical remarks on the Province of Chieti town (Abruzzo, Central Italy). J Ethnopharmacol. 2001;74:17–40.

    Article  PubMed  CAS  Google Scholar 

  8. Shinwari MI, Khan MA. Folk use of medicinal herbs of Margalla Hills National Park, Islamabad. J Ethnopharmacol. 2000;69:45–56.

    Article  PubMed  CAS  Google Scholar 

  9. Karthik D, Ravikumar S. A study on the protective effect of Cynodon dactylon leaves extract in diabetic rats. Biomed Environ Sci. 2011;24(2):190–9.

    PubMed  CAS  Google Scholar 

  10. Karthik D, Ravikumar S. Proteome and phytochemical analysis of Cynodon dactylon leaves extract and its biological activity in diabetic rats. Biomed Prevent Nutr. 2011;1:49–56.

    Article  Google Scholar 

  11. Barreto EO, Riederer I, Arantes AC. Thymus involution in alloxan diabetes: analysis of mast cells. Mem Inst Oswaldo Cruz. 2005;100(1):127–30.

    Article  PubMed  Google Scholar 

  12. Gygi SP, Aebersold R. Mass spectrometry and proteomics. Curr Opin Chem Biol. 2000;4:489–94.

    Article  PubMed  CAS  Google Scholar 

  13. Pixton KL, Deeks ED, Flesch FM. Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report. Hum Reprod. 2004;19:1438–47.

    Article  PubMed  Google Scholar 

  14. Baker MA, Witherdin R, Hetherington L. Identification of post-translational modifications that occur during sperm maturation using difference in two-dimensional gel electrophoresis. Proteomics. 2005;5:1003–12.

    Article  PubMed  CAS  Google Scholar 

  15. Naaby-Hansen S, Mandal A, Wolkowicz MJ, Sen B, Westbrook VA, Shetty J, et al. CABYR, a novel calcium-binding tyrosine phosphorylation-regulated fibrous sheath protein involved in capacitation. Dev Biol. 2002;242:236–54.

    Article  PubMed  CAS  Google Scholar 

  16. Turner RM, Musse MP, Mandal A. Molecular genetic analysis of two human sperm fibrous sheath proteins, AKAP4 and AKAP3, in men with dysplasia of the fibrous sheath. J Andrology. 2001;22:302–15.

    CAS  Google Scholar 

  17. Bohring C, Krause W. Immune infertility: towards a better understanding of sperm (auto)-immunity. The value of proteomic analysis. Hum Reprod. 2003;18:915–24.

    Article  PubMed  CAS  Google Scholar 

  18. Johnston DS, Wooters J, Kopf GS. Analysis of the human sperm proteome. Ann NY Acad Sci. 2005;1061:190–202.

    Article  PubMed  CAS  Google Scholar 

  19. O’Brien RM, Granner DK. Regulation of gene expression by insulin. Physiol Rev. 1996;76:1109–61.

    PubMed  Google Scholar 

  20. Spiegelman BM. Peroxisome proliferator-activated receptor gamma: a key regulator of adipogenesis and systemic insulin sensitivity. Eur J Med Res. 1997;2:457–64.

    PubMed  CAS  Google Scholar 

  21. Suh YH, Kim Y, Bang JH. Analysis of gene expression profiles in insulin-sensitive tissues from pre-diabetic and diabetic Zucker diabetic fatty rats. J Mol Endocrinol. 2005;34:299–315.

    Article  PubMed  CAS  Google Scholar 

  22. Damerval C, Devienne D, Zivy M. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis. 1986;7:52–4.

    Article  CAS  Google Scholar 

  23. Bradford MA. Rapid and sensitive method for the quantitation of protein utilizing the principles of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  24. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.

    PubMed  Google Scholar 

  25. Perkins DN, Pappin DJC, Creasy DM. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.

    Article  PubMed  CAS  Google Scholar 

  26. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537–46.

    PubMed  CAS  Google Scholar 

  27. Satyanarayana K, Mangathayaru V, Shreekanth J. Studies of hypoglycemic and cardiotonic effects of roots of Cocculus hisutus. Indian J Pharmaceut Sci. 2001;63:30–55.

    Google Scholar 

  28. Chakravarti BK, Gupta S, Gambir SS. Pancreatic beta cell regeneration. A novel antidiabetic mechanism of Pterocarpus marsupium Roxb. Indian J Pharmacol. 1980;12:123–7.

    Google Scholar 

  29. Yamada T, Hisanaga M, Nakajima Y. Enhanced expression of hepatocyte growth factor by pulmonary ischemia–reperfusion injury in the rat. Am J Respir Crit Care Med. 2000;162:707–15.

    PubMed  CAS  Google Scholar 

  30. Burns KH, Viveiros MM, Ren Y. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science. 2003;300:633–6.

    Article  PubMed  CAS  Google Scholar 

  31. Maggi LB, Kuchenruether M, Dadey DY. Nucleophosmin serves as a rate-limiting nuclear export chaperone for the mammalian ribosome. Mol Cell Biol. 2008;28:7050–65.

    Article  PubMed  CAS  Google Scholar 

  32. Grisendi S, Bernardi R, Rossi M. Role of nucleophosmin in embryonic development and tumorigenesis. Nature. 2005;437:147–53.

    Article  PubMed  CAS  Google Scholar 

  33. Lim MJ, Wang XW. Nucleophosmin and human cancer. Cancer Detect Prev. 2006;30:481–90.

    Article  PubMed  CAS  Google Scholar 

  34. Yun JP, Chew EC, Liew CT. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix. J Cell Biochem. 2003;90:1140–8.

    Article  PubMed  CAS  Google Scholar 

  35. Namboodiri VM, Akey IV, Schmidt-Zachmann MS. The structure and function of Xenopus NO38-core, a histone chaperone in the nucleolus. Structure. 2004;12:2149–60.

    Article  PubMed  CAS  Google Scholar 

  36. Hollmann S, Touster O. Metabolism of glucuronic and ascorbic acids. In: Hollmann S, Touster O, editors. Non-glycolytic pathways of metabolism of glucose. New York: Academic Press; 1964. p. 107–13.

    Google Scholar 

  37. Ishikura S, Isaji T, Usami N. Molecular cloning, expression and tissue distribution of hamster diacetyl reductase. Identity with lxylulose reductase. Chem Biol Interact. 2001;130–13:879–89.

    Article  Google Scholar 

  38. Nakagawa J, Ishikura S, Asami J. Molecular characterization of mammalian dicarbonyl/l-xylulose reductase and its localization in kidney. J Biol Chem. 2002;277:7883–91.

    Google Scholar 

  39. Goode D, Lewis E, Crabbe J. Accumulation of xylitol in the mammalian lens is related to glucuronate metabolism. FEBS Lett. 1996;395:174–8.

    Article  PubMed  CAS  Google Scholar 

  40. Matsunaga T, Kamiya T, Sumi D. l-xylulose reductase is involved in 9,10-phenanthrenequinone-induced apoptosis in human T lymphoma cells. Free Radical Biol Med. 2008;44:1191–202.

    Article  CAS  Google Scholar 

  41. Cho-Vega JH, Tsavachidis S, Do KA. Dicarbonyl/l-xylulose reductase: a potential biomarker identified by lasercapture microdissection-micro serial analysis of gene expression of human prostate adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2007;16:2615–22.

    Article  PubMed  CAS  Google Scholar 

  42. Fisher M, Gokhman I, Pick U. A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem. 1996;271:17718–23.

    Article  PubMed  CAS  Google Scholar 

  43. Premkumar L, Bageshwa UK, Gokhman I. An unusual halotolerant a-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli. Protein Exp Purif. 2003;28:151–7.

    Article  CAS  Google Scholar 

  44. Carter ND, Dodgson SJ, Tashian RE. The carbonic anhydrases: cellular physiology and molecular genetics. New York: Plenum Publishing Corp; 1991. p. 247–56.

    Google Scholar 

  45. Jeffery S, Dodgson SJ, Tashian RE. The carbonic anhydrases: cellular physiology and molecular genetics. New York: Plenum Publishing Corp; 1991. p. 289–96.

    Google Scholar 

  46. Kelly CD, Carter ND, Jeffery S. Characterisation of cDNA clones for rat muscle carbonic anhydrase III. Biosci Rep. 1988;8:401–6.

    Article  PubMed  CAS  Google Scholar 

  47. Koester MK, Pullan LM, Noltmann EA. The p-nitrophenyl phosphatase activity of muscle carbonic anhydrase. Arch Biochem Biophys. 1981;211:632–42.

    Article  PubMed  CAS  Google Scholar 

  48. Eriksson AE, Liljas A. Refined structure of bovine carbonic anhydrase III at 2.0 a resolution. Proteins Struct Funct Genet. 1993;16:29–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The first author (Dr. D. Karthik) deeply owes his sincere thanks to MERCK MILLIPORE-MSPL, Bengaluru, KA, India for granting special permission to PhD. We are grateful to the Department of Biotechnology, PRIST University, Thanjavur, Tamilnadu for giving research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivanesan Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthik, D., Ilavenil, S., Kaleeswaran, B. et al. Analysis of Modification of Liver Proteome in Diabetic Rats by 2D Electrophoresis and MALDI-TOF-MS. Ind J Clin Biochem 27, 221–230 (2012). https://doi.org/10.1007/s12291-012-0209-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-012-0209-8

Keywords

Navigation