Skip to main content
Log in

Effect of Oxidized Phosphatidylcholine on Biomarkers of Oxidative Stress in Rats

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

In this study it was planned to investigate the effect of oxidized phosphatidylcholine (derived from egg) feeding on lipid peroxidation of different tissues in rats. Male Wistar albino rats were fed oxidized and unoxidized phosphatidylcholine for 2 and 4 weeks, respectively. During the period of study food intake and body weights of animals increased gradually. Animals fed oxidized phosphatidylcholine for 2 and 4 weeks showed 33 and 15% spontaneous hemolysis of red blood cells in vitro. Under identical experimental conditions animals given unoxidized phosphatidylcholine showed 14.5 and 13.4% hemolysis for 2 and 4 week’s period, respectively. Thiobarbituric acid reactive substances (TBARS) level in thymus, spleen, kidney, heart, liver and lung significantly increased in rats given oxidized phosphatidylcholine as compared to unoxidized group. Furthermore, in oxidized phosphatidylcholine group TBARS values in kidney, liver and lungs continued to rise for 4 weeks of treatment while TBARS level in heart, spleen and thymus was found to be decreased at the end of 4 weeks of oxidized phosphatidylcholine feeding. Plasma triacylglycerol and cholesterol was found to increase in rats who had received oxidized phosphatidylcholine for 2 weeks. These findings suggest that excess and persistent intake of oxidized phosphatidylcholine can cause significant damage to organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Esterbauer H. Cytotoxicity and genotoxicity of lipid peroxidation products. Am J Clin Nutr. 1993;57:779S–86S.

    PubMed  CAS  Google Scholar 

  2. Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol. 2002;13:9–24.

    Article  Google Scholar 

  3. Shimura J, Shimura F, Hosoya N. Functional disability of rats spleenocytes provoked to lipid peroxidation by cumene hydroperoxide. Biochim Biophys Acta. 1985;845:43–7.

    Article  PubMed  CAS  Google Scholar 

  4. Lee JYC, Wan JMF. Vitamin E supplementation improves cell- mediated immunity and oxidative stress in Asian men and women. J Nutr. 2000;130:2932–7.

    PubMed  CAS  Google Scholar 

  5. Yoshida H, Kajimoto G. Effect of dietary vitamin E on the toxicity of autoxidized oil to rats. Ann Nutr Metab. 1989;33:153–61.

    Article  PubMed  CAS  Google Scholar 

  6. Kimura T, Lida K, Takei Y. Mechanisms of adverse effects of air-oxidized soy bean oil-feeding in rats. J Nutr Sci Vitaminol. 1984;30:125–33.

    PubMed  CAS  Google Scholar 

  7. Nishioka T, Havinga R, Tazuma S, Stellaard F, Kuipers F, Verkade HJ. Administration of phosphatidyl choline–cholesterol liposomes partially reconstitutes fat absorption in chronically bile diverted rats. Biochim Biophys Acta. 2004;1636:90–8.

    PubMed  CAS  Google Scholar 

  8. Weihrauch JL, Son YS. The phospholipids content of foods. J Am Oil Chem Soc. 1983;60:1971–7.

    Article  CAS  Google Scholar 

  9. Yoon TH, Kim IH. Phosphatidylcholine isolation from egg yolk phospholipids by high performance liquid chromatography. J Chromatogr A. 2002;949:209–16.

    Article  PubMed  CAS  Google Scholar 

  10. Qin J, Goswami R, Balabanov R, Dawson G. Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J Neurosci Res. 2007;85:977–84.

    Article  PubMed  CAS  Google Scholar 

  11. Kono N, Inoue T, Yoshida Y, Sato H, Matsusue T, Itabe H, Niki E, Aoki J, Arai H. Protection against oxidative stress induced hepatic injury by intracellular type II platelet activating factor acetylhydrolase by metabolism of oxidized phospholipids in vivo. J Biol Chem. 2008;283:1628–36.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshimi N, Ikura Y, Sugama Y, Kayo S, Ohsawa M, Yamamoto S, Inoue Y, Hirata K, Itabe H, Yoshikawa J, Ueda M. Oxidized phosphatidylecholine in alveolar macrophages in idiopathic interstitial pneumonias. Lung. 2005;183:109–21.

    Article  PubMed  CAS  Google Scholar 

  13. Patrick T, David G. Use of phosphatidylcholine for the correction of lower lid bulging due to prominent fat pads. J Cosmet Laser Ther. 2006;8:129–32.

    Article  Google Scholar 

  14. Igene JO, Pearson AM. Role of phospholipids and triglycerides in warmed-over flavor development in meat model systems. J Food Sci. 1979;44:1285–90.

    Article  CAS  Google Scholar 

  15. Khayat A, Schwall D. Lipid oxidation in sea food. Food Technol. 1983;37:130–40.

    CAS  Google Scholar 

  16. Melton SL. Methodology of following lipid oxidation in muscle foods. Food Technol. 1983;37:105–11.

    CAS  Google Scholar 

  17. Sessa DJ, Warner K, Honig DH. Soybean phosphatidylcholine develops bitter taste on autoxidation. J Food Sci. 1974;39:69–72.

    Article  CAS  Google Scholar 

  18. David J, Canty MS, Zeisel SH. Lecithin choline in human health and disease. Nutr Rev. 1994;52:327–39.

    Google Scholar 

  19. Shu-Ying Chung, Moriyama T, Uezu E, Uezu K, Hirata R, Yohena N, Mosuda Y, Kokubu T, Yamamoto S. Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia. J Nutr. 1995;125:1484–9.

    Google Scholar 

  20. Navder KP, Lieber CS. Polyenylphosphatidylcholine on ethanol-induced mitochondrial injury in rats. Biochem Biophys Res Commun. 2002;291:1109–12.

    Article  PubMed  CAS  Google Scholar 

  21. Chen R, Yang L, McIntyre MT. Cytotoxic phospholipids oxidation products: cell death from mitochondrial damage and the intrinsic caspase cascade. J Biol Chem. 2007;10:1074.

    Google Scholar 

  22. Yoshida H, Hirooka N, Kajimoto G. Microwave energy effects on quality of some seed oils. J Food Sci. 1990;55:1412–6.

    Article  Google Scholar 

  23. Ahmad F, Schiller H, Mukherjee KD. Lipid containing isoricinoleoyl (9-hydroxy-cis-12-octadecenoyl) moieties in seeds of Wrightia species. Lipid. 1986;21:486–90.

    Article  CAS  Google Scholar 

  24. Draper HH, Csallany AS. A simplified hemolysis test for vitamin E deficiency. J Nutr. 1969;98:390–4.

    PubMed  CAS  Google Scholar 

  25. Buckingham KM. Effect of dietary polyunsaturated/saturated fatty acids ratio and dietary vitamin E on lipid peroxidation in rats. J Nutr. 1985;115:1425–35.

    PubMed  CAS  Google Scholar 

  26. Uchiyama M, Mishara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86:271–8.

    Article  PubMed  CAS  Google Scholar 

  27. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    PubMed  CAS  Google Scholar 

  28. Orada M, Ito E, Terao K, Miyawaza T, Fujimoto K, Kaneda T. The effect of dietary lipid hydroperoxide on lymphoid tissues in mice. Biochim Biophys Acta. 1988;960:229–35.

    Google Scholar 

  29. Ichinose T, Nobuyuki S, Takano H, Abe M, Sadakane K, Yanagisawa R, Ochi H, Fujioka K, Lee KG, Shibamoto T. Liver carcinogenesis and formation of 8- hydroxyl-deoxyguanosine in C3H/He N mice by oxidized dietary oils containing carcinogenic dicarbonyl compounds. Food Chem Toxicol. 2004;42:1795–800.

    Article  PubMed  CAS  Google Scholar 

  30. Zimmerman GA, Prescott SM, Mclntyre TM. Oxidatively fragmented phospholipids are inflammatory mediators: the dark side of polyunsaturated lipids. J Nutr. 1995;125:1661S–5S.

    PubMed  CAS  Google Scholar 

  31. Smiley PL, Stremler KE, Prescott SM, Zimmerman GA, Mclntyre TM. Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet activating factor. J Biol Chem. 1991;266:1104–10.

    Google Scholar 

  32. Hayashi T, Uchida K, Takebc G, Takahashi K. Rapid formation of 4-hydroxyl-2-noneal, malondialdehyde and phosphatidylcholine aldehyde from phospholipids hydroperoxide by hemoproteins. Free Radical Biol Med. 2004;36:1025–33.

    Article  CAS  Google Scholar 

  33. Parinandi NL, Weis BK, Natrajan V, Heerald HOS. Peroxidative modification of phospholipids in myocardial membranes. Arch Biochem Biophys. 1990;280:45–52.

    Article  PubMed  CAS  Google Scholar 

  34. Zeisel SH. Lecithin in health and human nutrition. In: Szuhaj BF, editor. Lecithin: sources, manufacture and uses. Champaign, IL: American Oil Chemical Society; 1989. p. 225–36.

    Google Scholar 

  35. Gunther KD. Lecithin an active substance in animal nutrition. Kraftfutter. 1994;6:213–9.

    Google Scholar 

  36. Lieber CS, DeCarli LM, Mak KM, Kim CL, Leo MA. Attenuation of alcohol induced hepatic fibrosis by polyunsaturated lecithin. Hepatology. 1990;12:1390–8.

    Article  PubMed  CAS  Google Scholar 

  37. Leiber CS, Robins SJ, Li J, et al. Phosphatidylcholine protects against fibrosis and cirrhosis in baboon. Gastroenterology. 1994;106:152–9.

    Google Scholar 

  38. Jiang Y, Noh SK, Koo SI. Egg phopatidylcholine decreases the lymphatic absorption of cholesterol in rats. J Nutr. 2001;131:2358–63.

    PubMed  CAS  Google Scholar 

  39. Wojcicki J, Pawlick A, Samochowiec L, Kaldonska M, Mysliwiec Z. Clinical evaluation of lecithin as a lipid-lowering agent. Phytother Res. 1995;9:597–9.

    Article  Google Scholar 

  40. Sakakima Y, Hayakawa A, Nakao A. Phosphatidyl induces growth inhibitors of hepatic cancer by apoptosis via death ligands. Hepatogastroenterology. 2009;56:481–4.

    PubMed  CAS  Google Scholar 

  41. Yoshida Y, Ito N, Shimakawa S, Niki E. Susceptibility of plasma lipids to peroxidation. Biochem Biophys Res Commun. 2003;305:747–53.

    Article  PubMed  CAS  Google Scholar 

  42. Watkins TR. Role of soya phospholipid fractions in the bioavailability of dietary lipids. In: Paltaut H, Lekin D, editors. Lecithin and health care. Germany: Semmelweis-Verlag; 1985. p. 146–57.

    Google Scholar 

  43. Mastellone I, Polichetti E, Gres S, de la Maisonnleuve C, Domingo N, Mann V, Lorec AM, Farnarier C, Portugal H, et al. Soybean phosphatidylcholines lower lipidemia: mechanisms at the levels of intestine, endothelial cell, and hepato-biliary axis. J Nutr Biochem. 2000;11:461–6.

    Article  PubMed  CAS  Google Scholar 

  44. Gonzales MJ, Gray JI, Schemmel RA, Dugan L Jr, Welsch CW. Lipid peroxidation products are elevated in fish oil diets even in the presence of added antioxidants. J Nutr. 1992;122:2190–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saada M. Al-Orf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Orf, S.M. Effect of Oxidized Phosphatidylcholine on Biomarkers of Oxidative Stress in Rats. Ind J Clin Biochem 26, 154–160 (2011). https://doi.org/10.1007/s12291-010-0064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-010-0064-4

Keywords

Navigation