Skip to main content

Hypolipidemic Effect of Celastrus paniculatus in Experimentally Induced Hypercholesterolemic Wistar Rats

Abstract

The objective of the present study was to evaluate hypolipidemic effect of methanolic extract of Celastrus paniculatus in experimentally induced hypercholesterolemic rats. Hypercholesterolemia was induced by feeding the animals with high fat diet. Oral administration of methanolic seed extract (50%) of Celastrus paniculatus at the optimized dose of 65 mg/kg body weight, substantially reduced the plasma total cholesterol, triglycerides and LDL cholesterol in comparison with induced hypercholesterolemic animal group and the results were comparable with the standard hypocholesterolemic drug and almost similar to the control group. Atherogenic index and liver weight of treated animals also showed significant decrease compared to the hypercholesterolemic animals. It substantially increased the HDL cholesterol level as compared to control group. A significant increase in the activities of lipoprotein lipase and plasma LCAT enhanced hepatic bile acid synthesis and thereby, increased degradation of cholesterol to neutral sterols. Furthermore, the activities of HMG-CoA reductase, glucose 6-phosphate dehydrogenase and malate dehydrogenase were significantly reduced. Histological studies showed less cholesterol deposits in the aorta of animals fed with seed extract of C. paniculatus compared to the induced hypercholesterolemic animals not given C. paniculatus supplement.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Alberts AW, Chen J, Curon G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, oshau H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensen O, Hirschfield J, Hoogsteen K, Liesch J, Springer J. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and cholesterol-lowering agent. Proc Natl Acad Sci. 1980;77:3957.

    CAS  Article  PubMed  Google Scholar 

  2. Altschul R. Influence of nicotinic acid (Niacin) on hypercholesterolemia and hyperlipemia and on the course of atherosclerosis. In: Atlshul R, editor. Niacin in vascular disorder of and hyperlipemia. Springfield, IL: Charles C. Thomas; 1964. p. 135.

    Google Scholar 

  3. Annie A, Kurup PA. Dietary carbohydrates and regulation of the activity of HMGCoA reductase and cholesterol metabolism. Indian J Biochem Biophys. 1986;23:28.

    Google Scholar 

  4. Helen A, Rajasree R, Krishnakumar K, Augusti KT, Vijayammal PL. Antioxidant role of oils isolated from garlic (Allium sativum Linn), onion (Allium cepa Linn) on nicotine-induced lipid peroxidation. Vet Hum Toxieo. 1999;41:316.

    CAS  Google Scholar 

  5. Kamat JP, Boloor KK, Devasagayam TP, Venkatachalam SR. Antioxidant properties of Asparagus racemosus against damage induced by y-radiation in rat liver mitochondria. J Ethnopharmacol. 2000;71:425.

    CAS  Article  PubMed  Google Scholar 

  6. Chakrabarti S, Biswas TK, Seal T, Rokeya B, Ali L, Khan AK, Nahar N, Mosihuzzaman M, Mukherjee B. Antidiabetic activity of Caesalpinia bonducela F. in chronic type 2 diabetic model in Long-Evans rats and evaluation of insulin secretagogue property of its fractions on isolated islets. J Ethnopharmacol. 2005;97:117.

    Article  PubMed  Google Scholar 

  7. Dwivedi S, Agarwal MP. Antianginal and cardioprotective effects of Terminalia arjuna, an indigenous drug in coronary artery disease. J Assoc Physicians India. 1994;42:287.

    CAS  PubMed  Google Scholar 

  8. Bhattacharya A, Chatterjee A, Ghosal S, Bhattacharya SK. Antioxidant activity of active tannoid principles of Emblica officinalis (amla). lndian J Exp Biol. 1998;37:676.

    Google Scholar 

  9. Kirtikar KR, Basu BD. Indian medicinal plants, vol. I. In: Blatter E, Cauis R, Mhaskar KS, Basu LM, editors. Allahabad, India; 1984. p. 258.

  10. Mathur NT, Varma M, Dixit VP. Hypolipidemic and antiatherosclerotic effect of Celastrus paniculatus seed extract (50% E-OH) in cholesterol fed rabbits. Indian Drugs. 1993;30(2):76.

    Google Scholar 

  11. Burnstein M, Scholnic MR, Mortin R. Rapid method of estimation and isolation of lipoproteins from serum by precipitation of polyamines. J Lipid Res. 1970;11:583.

    Google Scholar 

  12. Zlatkis A, Zak B, Boyle AJ. A method for determination of serum cholesterol. J Lab Clin Med. 1953;41:486.

    CAS  PubMed  Google Scholar 

  13. Selveraj S, Ramsundaram S, Sundaramahalingam M, Narayanaperumal JP, Rathinasamy SD. Hypolipidemic effect of Triphala in experimentally induced hypercholeseremic rats. Yakazaku zasshi. 2007;127(2):385.

    Article  Google Scholar 

  14. Friedwald WT, Levy RT, Fredrickson DS. Estimation of concentration of low density lipoproteins cholesterol in plasma without use of preoperative ultracentrifuge. Clin Chem. 1970;18:449.

    Google Scholar 

  15. Grundy SM, Ahrens EH, Miettinen TA. Quantitative isolation and gas-liquid chromatographic analysis of total dietary and neutral sterols. J Lipid Res. 1965;6:411.

    PubMed  Google Scholar 

  16. Palmer H. The enzymatic assay of bile acids and related 3 hydroxy steroids: its application to serum and other biological fluids. Methods Enzymol. 1969;15:280.

    CAS  Article  Google Scholar 

  17. Ghanbari Sissan MA, Leelamma S. Influence of components of oral contraceptive on lipid metabolism. Indian J Exp Biol. 1996;34:131–4.

    Google Scholar 

  18. Warnick GR, Albers JJ. A comprehensive evaluation of the heparin-anganese precipitation procedure for estimating high density lipoprotein cholesterol. J Lipid Res. 1978;19:65.

    CAS  PubMed  Google Scholar 

  19. Venugopalan Rao A, Ramakrishnan S. Indirect assessment of hydroxymethyl glutaryl CoA reductase (NAOPH) activity in liver tissue. Clin Chem. 1975;21:1523.

    Google Scholar 

  20. Chitra V, Leelamma S. Hypolipidemic effect of coriander seeds (Coriandrumsativum): mechanism of action. Plant Foods Hum Nutr. 1997;51:167–72.

    Article  Google Scholar 

  21. Ahmad-Raus R, Abdul-Latif ES, Mohammad J. Lowering of lipid composition in aorta of guinea pigs by Curcuma domestica. BMC Complement Altern Med. 2001;1:6.

    CAS  Article  PubMed  Google Scholar 

  22. Schultz A. Eine methode des mikrochemischen cholesterinnachweises am gewebsschnitt. Zentrabi Allgem Pathol. 1924;35:314–8.

    CAS  Google Scholar 

  23. Phil-Sun O, Sei-Jung L, Kye-Taek L. Hypolipidemic and antiobedetive of the plant glycoprotein (36 kDa) from the Rhus vernicufulia stokes fruit in Triton WR-1339 induced hyperlipidemic rats. Biosci Biotechnol Biochem. 2006;70(2):447.

    Article  Google Scholar 

  24. Kannel WB, Castelli CW, Gordon T, McNamara PM. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. Ann Intern Med. 1971;74:1.

    CAS  PubMed  Google Scholar 

  25. Bordia A, Verma SK. Effect of Celastrus Paniculatus wild oil (Bravobol) on blood lipids in patients of coronary. Antiseptic. 1998;95(4):112.

    Google Scholar 

  26. Francesca A, Nicola B, Raffaele C, Domenico M, Angelo A, Simona D, Francesco A. A new sesquiterpenes with intestinal relaxant effect from Celastrus paniculatus. Planta Med. 2004;70:652.

    Article  Google Scholar 

  27. Patil KS, Jayaprakash S. Effect of Celastrus paniculatus Willd. seed on adjuvant induced arthritis in rats. Pharmacogn Mag. 2007;3:177.

    Google Scholar 

  28. Nalina K, Aroor AR, Kumar KB, Rao A. Studies on biogenic amines and their metabolites in mentally retarded children in Celastrus oil therapy. Altern Med. 1986;1:355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Patil.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patil, R.H., Prakash, K. & Maheshwari, V.L. Hypolipidemic Effect of Celastrus paniculatus in Experimentally Induced Hypercholesterolemic Wistar Rats. Ind J Clin Biochem 25, 405–410 (2010). https://doi.org/10.1007/s12291-010-0050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-010-0050-x

Keywords

  • Atherogenic index
  • Celastrus paniculatus
  • Lipid profile
  • LDL
  • VLDL
  • Cardio protective
  • Lipid lowering
  • Neutral sterols
  • Plasma LCAT