Skip to main content

Advertisement

Log in

Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O 2 ) and hydroxyl radical (HO·) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton’s reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H2O2-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloch A, Thomson CA. Position of the American Diabetic Association: Phytochemicals and functional foods. J Am Diet Ass 1995;95:493–496.

    Article  Google Scholar 

  2. Yamahara J, Mochizuki M, Rong HQ, Matsuda H, Fujimura H. The anti-ulcer effect in rats of ginger constituents. J Ethnopharmacol 1988;23:299–304.

    Article  CAS  PubMed  Google Scholar 

  3. Yamahara J, Rong HQ, Naitoh Y, Kitani T, Fujimura H. Inhibition of cytotoxic drug-induced vomiting in suncus by a ginger constituent. J Ethnopharmacol 1989;27:353–355.

    Article  CAS  PubMed  Google Scholar 

  4. Yamahara J, Huang QR, Li YH, Xu L, Fujimora H. Gastrointestinal motility enhancing effect of ginger and its active constituents. Chem Pharm Bull (Tokyo) 1990;38:430–431.

    CAS  Google Scholar 

  5. Phillips S, Hutchinson S, Ruggier R. Zingiber officinale does not affect gastric emptying rate. A randomized, placebo controlled, crossover trial. Anesthesia 1993;48:393–395.

    Article  CAS  Google Scholar 

  6. Sharma SS, Gupta YK. Reversal of cisplatin-induced delay in gastric emptying in rats by ginger (Zingiber officinale). J Ethnopharmacol 1998;62:49–55.

    Article  CAS  PubMed  Google Scholar 

  7. Bliddal H, Rosetzsky A, Schlichting P, Weidner MS, Andersen LA, Ibfelt HH. A randomized, placebo-controlled, cross-over study of ginger extracts and ibuprofen in osteoarthritis. Osteoarthr Cartilage 2000;8:9–12.

    Article  CAS  Google Scholar 

  8. Kim JK, Kim Y, Na KM, Surh YJ, KTim TY. [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radical Res 2007;41:603–614.

    Article  CAS  Google Scholar 

  9. Cooke MS, Evans MD, Dizdraoglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation and disease. FASEB J 2003:17:1195–1214.

    Article  CAS  PubMed  Google Scholar 

  10. Vaca CE, Wilhelm J, Rihsdahi HM. Interaction of lipid peroxidation product with DNA. A review. Mutat Res Rev Genet Toxicol 1998;195:137–145.

    Google Scholar 

  11. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radical Biol Med 1991;11:81–128.

    Article  CAS  Google Scholar 

  12. Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress and aging. Free Radical Biol Med 2000;29:222–230.

    Article  CAS  Google Scholar 

  13. Humphries K, Yoo Y, Szweda LI. Inhibition of NADH-linked mitochondrial respiration by 4-hydoxy-2-nonenal. Biochem 1998;37:552–557.

    Article  CAS  Google Scholar 

  14. Feron VJ, Til HP, de Vrijer F, Woutersen RA, Cassee FR, van Bladeren PJ. Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat Res 1991;259:363–385.

    Article  CAS  PubMed  Google Scholar 

  15. Smith MJ, Inserra PF, Watson RR, Wise JA, O’Neill KL. Supplementation with fruit and vegetable extracts may decrease DNA damage in the peripheral lymphocytes of an elderly population. Nutrition Res 1999;19:1507–1518

    Article  CAS  Google Scholar 

  16. Ajith TA, Hema U, Aswathi S. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status. Food Chem Toxicol 2007;45:2267–2272.

    Article  CAS  PubMed  Google Scholar 

  17. Ajith TA, Nivitha V, Usha S. Zingiber officinale Roscoe alone and in combination with _-tocopherol protect kidney against cisplatin induced acute renal failure. Food Chem Toxicol 2007;45:921–927.

    Article  CAS  PubMed  Google Scholar 

  18. Ajith TA, Aswathi S, Hema U. Protective effect of Zingiber officinale roscoe against anticancer drug doxorubicin-induced acute nephrotoxicity. Food Chem Toxicol 2008;46:3178–3181.

    Article  CAS  PubMed  Google Scholar 

  19. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Annal Biochem 1979;95:351–358.

    Article  CAS  Google Scholar 

  20. Ajith TA, Harikumar KB, Thasna H, Sabu MC, Babitha NV. Proapoptotic and antitumor activities of the HMG-CoA reductase inhibitor, lovastatin, against Dalton’s Lymphoma Ascites tumor in mice. Clin Chim Acta 2006;366:322–328.

    Article  CAS  PubMed  Google Scholar 

  21. Ajith TA, Riji T, Anu V. In vitro antioxidant and DNA protective effects of the novel 3-hydroxy-3-methylglutryl coenzyme A reductase inhibitor rosuvastatin. Clin Exp Pharmacol Physiol 2008;35:625–629.

    Article  CAS  PubMed  Google Scholar 

  22. Ishikawa Y, Satoh T, Enokido Y, Nishio C, Ikeuchi T, Hatanka H. Generation of reactive oxygen species, release of L-glutamate and activation of caspases are required for oxygen induced apoptosis of embryonic hippocampal neurons in culture. Brain Res 1999;824:71–80.

    Article  CAS  PubMed  Google Scholar 

  23. Buckman TD, Sitphin MS, Mitrovic B. Oxidative stress in a clonal cell line of neuronal origin: effects of antioxidant enzyme modulation. J Neurochem 1993;60:2046–2058.

    Article  CAS  PubMed  Google Scholar 

  24. Lenaz G, Bovina C, D’Aurelio M, Fato R, Formiggini G, Geneva MI, Giulianao G, Merb PM, Ventura PB. Role of mitochondria in oxidative stress and aging. Ann NY Acad Sci. 2002;959:199–213.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Fiskum G, Schubert O. Generation of reactive oxygen species by mitochondrial electron transport chain. J Neurochem 2002;80:780–787.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Q, Vasquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278:36027–36031.

    Article  CAS  PubMed  Google Scholar 

  27. Wei YH. Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med 1998;217:53–63.

    CAS  PubMed  Google Scholar 

  28. Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schnizer M, Suter M, Walter P, Yaffee M. Oxidants in mitochondria: from physiology to disease. Biochim Biophys Acta 1995;1271:67–74.

    PubMed  Google Scholar 

  29. Halliwell R, Aruoma OI. DNA damage by oxygen-derived species. FEBS Lett. 1991;281:9–19.

    Article  CAS  PubMed  Google Scholar 

  30. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem J 1996;313:17–29.

    CAS  PubMed  Google Scholar 

  31. Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 1998;240:640–642.

    Article  Google Scholar 

  32. Powell LW, Bassett ML, Halliday JW. Hemochromatosis. Gastroenterol 1980;78:374–381.

    CAS  Google Scholar 

  33. Toyokuni S. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 2009;100:9–16.

    Article  CAS  PubMed  Google Scholar 

  34. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 2005;12:1161–1208.

    Article  CAS  PubMed  Google Scholar 

  35. Kabat GC, Rohan TE. Does excess iron play a role in breast carcinogenesis? An unresolved hypothesis. Cancer Cause Control 2007;18:1047–1053.

    Article  Google Scholar 

  36. Hall ED. Novel inhibitors of iron-dependent lipid peroxidation for neurodegenerative disorders. Ann Neurol 1992;32:S137–S142.

    Article  CAS  PubMed  Google Scholar 

  37. Halliwell B. Oxidants and the central nervous system: Some fundamental questions. Is oxidant damage relevant to Parkinson’s disease,Alzheimer’s disease, traumatic injury or stroke? Acta Neurol Scand 1989;80:S23–S33.

    Article  Google Scholar 

  38. Carbonell T, Rama R. Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem 2007;14:857–874.

    Article  CAS  PubMed  Google Scholar 

  39. Langner E, Greifenberg S, Gruenwald J. Ginger: History and use. Adv Ther 1998;15:25–30.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Ajith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajith, T.A. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe. Indian J Clin Biochem 25, 67–73 (2010). https://doi.org/10.1007/s12291-010-0014-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-010-0014-1

Key Words

Navigation