Skip to main content

Advertisement

Log in

Improvement in electrolyte imbalance in critically ill patient after magnesium supplementation — A case report

  • Case Report
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Hypomagnesaemia is common finding in current medical practice mainly in critically ill, post-operative patients and patients admitted to ICU in tertiary cancer cases. Magnesium has been directly implicated in hypokalemia, hypocalcaemia and dysrrthymias. We report a case of 60 year old patient, suffering from rectal carcinoma for a period of one year with confirmed hypokalemia, hypocalcaemia and hyponatremia. Magnesium supplementation corrected the underlying multiple electrolyte disturbances in the patient thus, establishing a positive correlation of magnesium with sodium, potassium and calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guerin C, Cousin C, Mignot F, Manchon M, Fournier G. Serum and erythrocyte magnesium in critically ill patients. Intensive Care Medicine 1996; 22: 724–727.

    Article  PubMed  CAS  Google Scholar 

  2. Deheinzelin D, EM Negri, MR Tucci, MZ Salem, VM da Cruz, RM Oliveira, IN Nishimoto, Hoelz C. Hypomagnesaemia in critically ill cancer patients: a prospective study of predictive factors. Braz J Med Biol Res 2000; 33(12): 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  3. al-Ghamdi SM, Cameron EC, Sutton RA. Magnesium deficiency: pathophysiologic and clinical overview. Am J Kidney Dis 1994; 24(5): 737–752.

    PubMed  CAS  Google Scholar 

  4. Tong GM, Rude RK. Magnesium deficiency in critical illness. J Int Care Med 2005; 20(1): 3–17.

    Article  Google Scholar 

  5. Whang R, Ryder KW. Frequency of hypomagnesaemia and hypermagnesaemia: Requested vs. routine. JAMA 1990; 263: 3063–3064.

    Article  PubMed  CAS  Google Scholar 

  6. Nicholas CG, Ho K, Herbert S. Mg (2+)-dependent inward rectification of ROMK1 potassium channels expressed in Xenopus oocytes. J Physiol 1994; 476(3): 399–409.

    Google Scholar 

  7. Kelepouris E. Cytosolic Mg2+ modulates whole cell K+ and Cl currents in cortical thick ascending loop (TAL) cells of rabbit kidney (abst.). Kidney Int 1990; 37: 564.

    Google Scholar 

  8. Whang R, Whang DD, Ryan MP. Refractory potassium repletion: a consequence of magnesium deficiency. Arch Intern Med 1992; 152: 40–45.

    Article  PubMed  CAS  Google Scholar 

  9. Quamme GA. Renal magnesium handling: New insights in understanding old problems. Kidney Int 1997; 52: 1180–1195.

    Article  PubMed  CAS  Google Scholar 

  10. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lyton J, Herbert SC. Cloning and characterization of an extracellular Ca2+ -sensing receptor from bovine parathyroid. Nature 1993; 366:575–580.

    Article  PubMed  CAS  Google Scholar 

  11. Brown EM, MacLeod RJ. Extracellular Calcium sensing and extracellular calcium signaling. Physiol Rev 2001; 81:239–297.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailja Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Sodhi, S., Kaur, J. et al. Improvement in electrolyte imbalance in critically ill patient after magnesium supplementation — A case report. Indian J Clin Biochem 24, 208–210 (2009). https://doi.org/10.1007/s12291-009-0039-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-009-0039-5

Key Words

Navigation