Skip to main content
Log in

Whether western normative laboratory values used for clinical diagnosis are applicable to Indian population? An overview on reference interval

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Reference Intervals denote normative values related to laboratory parameters/analytes used by diagnostic centers for clinical diagnosis. International guidelines recommend that every country must establish reference intervals for healthy individuals belonging to a group of homogeneous population. Considering enormous racial and ethnic diversity of Indian population, it is mandatory to establish reference intervals specific to Indian population. The overview on reference interval describes why the national organizations in India need to initiate nationwide efforts to establish its own laboratory standards for apparently healthy reference individuals belonging to our polygenetic, polyethnic, polyracial, multilinguistic and multicultural predominantly rural and appreciable urban Indian population with varied dietary habits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demographics of India Wikipedia, the free encyclopedia. Available from: http://en.wikipedia.org/wiki/Population_of_India)/www.census of india.com

  2. Facts about India — People of India — ethnic groups. Availed from: http://www.webindia123.com/india/people/people.htm

  3. Solberg HE. A guide to IFCC recommendations on reference value. J Int Fed Clin Chem 1993; 5: 160–164.

    Google Scholar 

  4. How to define and determine Reference Intervals in the Clinical Laboratory; Approved Guidelines. 2nd ed. Clinical and Laboratory Standards Institute (CLSI Document no. C28-A2 2008; 20(13) pp. 1–38.

  5. Grasbeck R. The evolution of the reference value concept. Clin Chem Lab Med 2004; 42: 692–697

    Article  PubMed  Google Scholar 

  6. Ceriotti F. Prerequisites for use of common reference intervals. Clin Biochem Rev 2007; 28: 115–121.

    PubMed  Google Scholar 

  7. Horn PS, Pesce AJ. Reference intervals: an update. Clin Chim Acta 2003; 334: 5–23.

    Article  PubMed  CAS  Google Scholar 

  8. Horn PS, Pesce AJ. Reference intervals, a user’s guide. American Association for Clinical Chemistry press, Washington, DC. 2005 pp 1–123.

    Google Scholar 

  9. International Federation of Clinical Chemistry, Expert Panel on Theory of Reference Values: Approved recommendation on the theory of reference values. Part 1, The concept of reference values. J Clin Chem Clin Biochem 1987; 25:337–342 Part 2, Selection of individuals for the production of reference values. J Clin Chem Clin Biochem 1987; 25: 639–44 Part 3, Preparation of Individuals and collection of specimens for the production of reference values. J Clin Chem Clin Biochem 1988; 26:593–8 Part 4 Control of analytical variation in the production, transfer and application of reference values. J Clin Chem Clin Biochem 1991; 29: 531–5 Part 5, Statistical treatments of collected reference values. Determination of reference limits. J Clin Chem Clin Biochem 1987; 25:645–56 Part 6, Presentation of observed values related to reference values. J Clin Chem Clin Biochem 1987; 25:657–62

    Google Scholar 

  10. Sasse E. Reference intervals and clinical decision limits. In: Kazmierczak S, editor. Clinical Chemistry: Theory, analysis, and correlation. St. Louis, MO: Mosby 2003. p. 362–378.

    Google Scholar 

  11. Solberg HE. Establishment and use of reference values. In: Burtis CA, Ashwood ER, Burns DE editors. Tietz text book of clinical chemistry and molecular diagnostics. 4th ed. Elsevier India 2006. pp. 423–448.

  12. Buncher CR, Weiner D. Reference values. In: Kaplan LA. Pesce AJ. editors. Clinical Chemistry, theory, analyses and correlation. St. Louis: The C.V. Mosby Company 1984 pp. 301–309.

    Google Scholar 

  13. Henny J, PetitClerc C, Fuentes-Arderiu X, Hyltoft Petersen P, Queralto JM, Schiele F, et al. Need for revisiting the concept of reference values. Clin Chem Lab Med 2000; 38: 589–595.

    Article  PubMed  CAS  Google Scholar 

  14. Siest G, Henny J, Schiele F, Young DS, editors. Interpretation of clinical laboratory tests: Reference values and their biological variation. Foster City; CA: Biomedical Publications 1985.

    Google Scholar 

  15. Siest G. Study of reference values and biological variations: a necessity and a model for preventive medicine centers. Clin Chem Lab Med 2004; 42:810–816.

    Article  PubMed  CAS  Google Scholar 

  16. Stamm D. Control of analytical variation in the production of reference values. In Grasbeck R. Alstrom T. editors, Reference values in laboratory medicine, John Willey and sons ltd; 1981: 109–126.

  17. Fraser CG. Inherent biological variation and reference values. Clin Chem Lab Med 2004; 42: 752–764.

    Article  Google Scholar 

  18. Buttner J. Biological variation and quantification of health: The emergence of the concept of normality. Clin Chem Lab Med 1998; 36: 68–73.

    Google Scholar 

  19. Boyd JC. Cautions in the adoption of common reference intervals. Clin Chem 2008; 54: 238–239.

    Article  PubMed  CAS  Google Scholar 

  20. Horn P, Pesce AJ. Effect of ethnicity on reference intervals. Clin Chem 2002; 48: 1802–1804.

    PubMed  CAS  Google Scholar 

  21. Johnson AM, Hyltoft Petersen P, Whicher JT, Carlstrom A, MacLennan S. On behalf of the International Federation for Clinical Chemistry and Laboratory Medicine, Committee on Plasma Proteins. Reference intervals for plasma proteins: Similarities and differences between adult Caucasians and Asian Indian males in Yorkshire, UK. Clin Chem Lab Med 2004; 792–799.

  22. Reidenberg MM, Gu ZP, Lorenzo B, Coutinho E, Athayde C, Frick J, et al. Differences in serum potassium concentrations in normal men in different geographic locations. Clin Chem 1993; 39: 72–75.

    PubMed  CAS  Google Scholar 

  23. Rustad P, Felding P, Lahti A. Proposal for guidelines to establish common biological reference intervals in large geographical areas for biochemical quantities measured frequently in serum and plasma. Clin Chem Lab Med 2004; 42: 783–791.

    Article  PubMed  CAS  Google Scholar 

  24. Ritchie RF, Palomaki G. Selecting clinically relevant populations for reference intervals. Clin Chem Lab Med 2004; 42: 702–709.

    Article  PubMed  CAS  Google Scholar 

  25. Ghoshal A, Soldin S. Evaluation of the Dade Behring Dimension RxL: Integrated chemistry system-pediatric reference ranges. Clin Chim Acta 2003; 33: 135–146.

    Article  Google Scholar 

  26. Stricker R, Eberhart R, Regli M, Perez V, Quinn F, Stricker R, et al. Trimester-Specific reference intervals for thyroid hormone assays on the Abbott ARCHITECT analyzer. American Association for Clin Chem Annual meeting (Abstract) Chicago, Illinois; 2006: July 23, no 7.

    Google Scholar 

  27. How to define and determine Reference Intervals in the Clinical Laboratory; Approved Guidelines, National Committee for Clinical Laboratory Standards (NCCLS) document C28-A; 1995: 15 (7) ISBN 1 - 56238 - 269 - 1771 East Lancaster Avenue, Villanova, Pennsylvania 19085.

  28. National Association of Testing Authorities. ISO/IEC 17025 Application document. Supplementary requirements for accreditation in the field of medical testing: 2000.

  29. PetitClerc C, Solberg HE. Approved recommendation on the theory of reference values. Part 2 Selection of individuals for the production of reference values. J Clin Chem Clin Biochem 1987; 25: 639–644.

    CAS  Google Scholar 

  30. Solberg HE, PetitClerc C. Approved recommendation on the theory of reference values. Part 3. Preparation of individuals and collection of specimens for the production of reference values. Clin Chim Acta 1988; 26: 593–598.

    CAS  Google Scholar 

  31. Felding P, Rustad P, Martensson A, Kairisto V, Franzson L, Hyltoft Petersen P, et al. Reference individuals, blood collection, treatment of samples and descriptive data from the questionnaire in the Nordic Reference Interval Project 2000. Scand J Clin Lab Invest 2004; 64: 327–342.

    Article  PubMed  CAS  Google Scholar 

  32. Hjelm M. Preparing reference individuals for blood collection. In: Grasbeck R, Alstrom T editors. Reference Values in laboratory Medicine. John Wiley and Sons Ltd; 1981; 109–126.

  33. Hyltoft Petersen P, Gowans EMS, Blaabjerg O, Horder M. Analytical goals for the estimation of non-Gaussian reference intervals. Scand J Clin Lab Invest 1989; 49: pp 727–737.

    Article  PubMed  CAS  Google Scholar 

  34. Klein G, Junge W. Creation of the necessary analytical quality for generating and using reference intervals. Clin Chem Lab Med 2004; 42: 851–857.

    Article  PubMed  CAS  Google Scholar 

  35. Ricos C, Domenech M, Perich C. Analytical quality specifications for common reference intervals. Clin Chem Lab Med 2004; 42: 858–862.

    Article  PubMed  CAS  Google Scholar 

  36. Hyltoft Petersen P, Boyd JC, Fraser CG, Jorgensen N. Objective criteria for partitioning Gaussian-distributed reference values into subgroups. Clin Chem 2002; 48: 338–352.

    PubMed  Google Scholar 

  37. Tango T. Estimation of age-specific reference ranges via smoother AVAS. Stat Med 1998; 17:1231–1243.

    Article  PubMed  CAS  Google Scholar 

  38. Lahti A. Are the common reference intervals truly common? Case studies on stratifying biochemical reference data by countries using two partitioning methods. Scand J Clin Lab Invest 2004; 64: 407–414.

    Article  PubMed  CAS  Google Scholar 

  39. Lahti A. Partitioning biochemical reference data into subgroups: Comparison of existing methods. Clin Chem Lab Med 2004; 42: 725–733.

    Article  PubMed  CAS  Google Scholar 

  40. Lahti A, Hyltoft Petersen P, Boyd JC, Fraser CG, Jorgensen N. Objective criteria for partitioning Gaussian-distributed reference values into subgroups. Clin Chem 2002; 48: 338–352.

    PubMed  CAS  Google Scholar 

  41. Lahti A, Hyltoft Petersen P, Boyd JC, Rustad P, Laake P, Solberg HE. Partitioning of Non Gaussian distributed biochemical reference data into subgroups. Clin Chem 2004; 50: 891–900.

    Article  PubMed  CAS  Google Scholar 

  42. Gellerstedt M, Petersen PH. Partitioning reference values for several subpopulations using cluster analysis. Clin Chem Lab Med 2007; 45: 1026–1032.

    Article  PubMed  CAS  Google Scholar 

  43. Brinkworth RSA, Whitham E, Nazeran H. Establishment of paediatric biochemical reference intervals. Ann Clin Biochem 2004; 41: 321–329.

    Article  PubMed  CAS  Google Scholar 

  44. Stromme JH, Rustad P, Steensland H, Theodorsen L, Urdal P. Reference intervals for eight enzymes in blood of adult females and males measured in accordance with the International Federation of Clinical Chemistry reference system at 370 C: part of the Nordic reference interval project. Scand J Clin Lab Invest 2004; 64: 371–384.

    Article  PubMed  CAS  Google Scholar 

  45. Soldin S, Brugnara C, Wong E, editors. Pediatric reference ranges. 4th ed. Washington, DC USA, AACC Press; 2003: 248.

    Google Scholar 

  46. Faulkner WR, Demers LM. Importance of age-dependent reference values in biochemical testing: are we including the elderly population? Clin Chem 1994; 40:855–856.

    PubMed  CAS  Google Scholar 

  47. Faulkner WR, Meites S, editors. Geriatric clinical chemistry: Reference values. AACC Press, Washington DC, USA; 1994.

    Google Scholar 

  48. Harris EK, Boyd JC, editors. Statistical bases of reference values in laboratory medicine. New York: Marcel Dekker, Inc; 1995.

    Google Scholar 

  49. Harris EK, Wong ET, Shaw ST. Statistical criteria for separate reference intervals: race and gender groups in creatine kinase. Clin Chem 1991; 37: 1580–1582.

    PubMed  CAS  Google Scholar 

  50. Lahti A, Hyltoft Petersen P, Boyd JC. Impact of subgroup prevalence on partitioning of Gaussian distributed reference values. Clin Chem 2002; 48:1987–1999.

    PubMed  CAS  Google Scholar 

  51. Harrell F, Davis C. A new distribution-free quantile estimator Biometrika 1982; 69: 635–640.

    Article  Google Scholar 

  52. Horn P. Robust quantile estimators for skewed populations. Biometrika 1990; 77: 631–636.

    Article  Google Scholar 

  53. Horn PS, Pesce AJ, Copeland BE. Reference interval computation using robust vs. parametric and nonparametric analyses. Clin Chem 1999; 45:2284–2285.

    PubMed  CAS  Google Scholar 

  54. Horn P, Pesce AJ, Copeland BE. A robust approach to reference interval estimation and evaluation. Clin Chem 1998; 44: 622–631.

    PubMed  CAS  Google Scholar 

  55. Linnet K. Nonparametric estimation of reference intervals by simple and bootstrap-based procedures. Clin Chem 2000; 46: 867–869.

    PubMed  CAS  Google Scholar 

  56. Solberg HE. Approved recommendations on the theory of reference values. Part 5.Statistical treatment of collected reference values: Determination of reference limits. J Clin Chem Clin Biochem 1987; 25: 645–656.

    CAS  Google Scholar 

  57. Solberg HE. The IFCC Recommendation on estimation of reference intervals. The RefVal program. Clin Chem Lab Med 2004; 42: 710–714.

    Article  PubMed  CAS  Google Scholar 

  58. PetitClerc C, Kelley A. Transferability of reference data: Grasbeck R, Alstrom T, editors. Reference values in laboratory medicine. England: John Wiley & Sons Ltd 1981.

    Google Scholar 

  59. Solberg HE, Stamm D. Approved recommendation on the theory of reference values. Part 4 Control of analytical variation in the production, transfer, and application of reference values. Eur J Clin Chem Clin Biochem 1991; 29: 531–535.

    PubMed  CAS  Google Scholar 

  60. Ichihara K, Itoh Y, Min Wk, Yap SF, Lam CWK, Kong XT et al. Diagnostic and epidemiological implications of regional differences in serum concentrations of proteins observed in six Asian cities. Clin Chem Lab Med 2004; 42: 800–809.

    Article  PubMed  CAS  Google Scholar 

  61. Jensen E, Hyltoft Petersen P, Blaabjerg O, Skov Hansen P, Brix TH, Ohm Kyvik K, et al. Establishment of a serum TSH reference interval in healthy adults. The importance of environmental factors, including thyroid antibodies. Clin Chem Lab Med 2004; 42: 824–832.

    Article  PubMed  CAS  Google Scholar 

  62. Gowans EMS, Hyltoft Petersen P, Blaabjerg O, Horder M. Analytical goals for the acceptance of common reference intervals for laboratories throughout a geographical area. Scand J Clin Lab Invest 1988; 48: 757–764.

    Article  PubMed  CAS  Google Scholar 

  63. Hyltoft Petersen P, Rustad P. Prerequisites for establishing common reference intervals. Scand J Clin Lab Invest 2004;64: 285–292.

    Article  PubMed  CAS  Google Scholar 

  64. Ceriotti F, Boyd JC, Klein G, Henny J, Queralto J, Kairisto V, et al. Reference intervals for serum Creatine concentrations: Assessment of available data for global application. Clin Chem 2008; 54: 559–566.

    Article  PubMed  CAS  Google Scholar 

  65. Dybkaer R: The theory of reference values, VI presentation of observed values related to reference values. Clin Chim Acta 1983; 127: 441F–448F.

    Article  Google Scholar 

  66. Jones GRD, Barker A, Tate J, Lim CF, Robertson K. The case for common reference intervals Clin Biochem Rev 2004; 99–104.

  67. Dybkaer R, Solberg HE. Approved recommendations on the theory of reference values Part 6 Presentation of observed values related to reference values. J Clin Chem Clin Biochem 1987; 25: 657–662.

    Google Scholar 

  68. Nordic Reference Interval Project: Translational biological reference intervals. Procedures and examples from the NORIP project Scand J Clin Lab Invest 2004; 64: 265–441.

    Google Scholar 

  69. Rustad P, Felding P, Franzson L, Kairisto V, Lahti A, Martensson A, et al. The Nordic reference interval project 2000: recommended reference intervals for 25 common biochemical properties. Scand J Clin Lab Invest 2004; 64: 271–284.

    Article  PubMed  CAS  Google Scholar 

  70. Rustad P, Felding P, Lahti A, Hyltoft Petersen P. Descriptive analytical data and consequences for calculation of common reference intervals in the Nordic Reference Interval Project 2000. Scand J Clin Lab Invest 2004; 64: 343–370.

    Article  PubMed  CAS  Google Scholar 

  71. Nordin G, Martensson A, Swolin B, Sandberg G, Christensen NJ, Thorsteinsson V etal. A multicentric study of reference intervals for hemoglobin, basic blood counts and erythrocyte indices in the adult population of the Nordic countries Scand J Clin Lab Med 2004; 64: 385–398.

    Article  CAS  Google Scholar 

  72. Nordic Society of Clinical Chemistry (NFKK) home page http://home.online.no /~ rustadp/refprosj.html

  73. Rustad P. Nordic Reference Interval Project (NORIP) Available from http://www.furst.no/norip (accessed on 27.1.2009)

  74. Ichihara K, Itoh Y, Lam CWK, Poon PMK, Kim JH, Kyono H, et al. Sources of variation for commonly measured serum analytes among 6 Asian cities and consideration of common reference intervals. Clin Chem 2008; 54: 356–365.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Malati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malati, T. Whether western normative laboratory values used for clinical diagnosis are applicable to Indian population? An overview on reference interval. Indian J Clin Biochem 24, 111–122 (2009). https://doi.org/10.1007/s12291-009-0022-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-009-0022-1

Key Words

Navigation