Skip to main content
Log in

Large strain flow curve characterization considering strain rate and thermal effect for 5182-O aluminum alloy

  • 30th Anniversary of the Korean Society for Technology of Plasticity
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

This research aims to characterize the effect of strain rate and temperature on flow behaviours under large plastic deformation for 5182-O aluminum alloy. Experiments are conducted with both dogbone and notched specimens at different strain rates and temperatures. All tests are analyzed by inverse engineering to identify the strain hardening behaviour at large plastic strains up to fracture. The experimental results show the highly coupling effect of strain rate and temperature. The two hardening laws of Swift-Voce model and p-model are calibrated by the finite element model update procedure, and the combination with the smallest error is selected as the input set of the artificial neural network (ANN) model. Then the dynamic hardening behaviours are modelled by the ANN to consider the highly coupled effect. The calibrated ANN model is further applied to ABAQUS/Explicit for numerical simulation under different loading conditions. Taking the finite element calculation time and prediction accuracy into consideration, the ANN model with single hidden layer optimized by particle swarm optimization algorithm is finally selected. The calibration results of the selected ANN model have the best consistency with an acceptable level of numerical computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, Smet PD, Haszler A, Vieregge A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280:37–49. https://doi.org/10.1016/S0921-5093(99)00653-X

    Article  Google Scholar 

  2. Mansouri LZ, Coër J, Thuillier S, Laurent H, Manach PY (2020) Investigation of Portevin-Le Châtelier effect during Erichsen test. Int J Mater Form 13:687–697. https://doi.org/10.1007/s12289-019-01511-5

    Article  Google Scholar 

  3. Kabirian F, Khan AS, Pandey A (2014) Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: Experiment and constitutive modeling. Int J Plast 55:232–246. https://doi.org/10.1016/j.ijplas.2013.11.001

    Article  Google Scholar 

  4. Jenab A, Taheri AK (2014) Experimental investigation of the hot deformation behavior of AA7075: Development and comparison of flow localization parameter and dynamic material model processing maps. Int J Mech Sci 78:97–105. https://doi.org/10.1016/j.ijmecsci.2013.11.003

    Article  Google Scholar 

  5. Seth M, Vohnout VJ, Daehn GS (2005) Formability of steel sheet in high velocity impact. J Mater Process Technol 168(3):390–400. https://doi.org/10.1016/j. jmatprotec.2004.08.032

    Article  Google Scholar 

  6. Khan AS, Baig M (2011) Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy. Int J Plast 27:522–538. https://doi.org/10.1016/j.ijplas.2010.08.001

    Article  MATH  Google Scholar 

  7. Abedrabbo N, Pourboghrat F, Carsley J (2007) Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models. Int J Plast 23:841–875. https://doi.org/10.1016/j.ijplas.2006.10.005

    Article  MATH  Google Scholar 

  8. Ge YL, Xia Y, Zhou Q (2022) Influence of pre-straining and heating on strain-rate sensitivity of AA5182-O. Int J Impact Eng 161:104106. https://doi.org/10.1016/j.ijimpeng.2021.104106

    Article  Google Scholar 

  9. Sadowski AJ, Rotter JM, Stafford PJ, Reinke T, Ummenhofer T (2017) On the gradient of the yield plateau in structural carbon steels. J Constr Steel Res 130:120–130. https://doi.org/10.1016/j.jcsr.2016.11.024

    Article  Google Scholar 

  10. Reis LC, Oliveira MC, Santos AD, Fernandes JV (2016) On the determination of the work hardening curve using the bulge test. Int J Mech Sci 105:158–181. https://doi.org/10.1016/j.ijmecsci.2015.11.009

    Article  Google Scholar 

  11. Traphöner H, Clausmeyer T, Tekkaya AE (2021) Methods for measuring large shear strains in in-plane torsion tests. J Mater Process Technol 287:116516. https://doi.org/10.1016/j.jmatprotec.2019.116516

    Article  Google Scholar 

  12. Zhang C, Lou YS, Zhang SJ, Clausmeyer T, Tekkaya AE, Fu L, Chen Q, Zhang Q (2021) Large strain flow curve identification for sheet metals under complex stress states. Mech Mater 161:103997. https://doi.org/10.1016/j.mechmat.2021.103997

    Article  Google Scholar 

  13. Knysh P, Korkolis YP (2017) Identification of the post-necking hardening response of rate- and temperature-dependent metals. Int J Solids Struct 115–116:149–160. https://doi.org/10.1016/j.ijsolstr.2017.03.012

    Article  Google Scholar 

  14. Cordero RR, François M, Lira I, Vial-Edwards C (2005) Whole-field analysis of uniaxial tensile tests by Moiré interferometry. Opt Lasers Eng 43(9):919–936. https://doi.org/10.1016/j.optlaseng.2004.10.002

    Article  Google Scholar 

  15. Petit J, Montay G, François M (2014) Strain rate measurements by speckle interferometry for necking investigation in stainless steel. Int J Solids Struct 51(2):540–550. https://doi.org/10.1016/j.ijsolstr.2013.10.029

    Article  Google Scholar 

  16. Avril S, Bonnet M, Bretelle AS, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements. Exp Mech 48(4):381. https://doi.org/10.1007/s11340-008-9148-y

    Article  Google Scholar 

  17. Yang WK, Wang LY, Song ZM, Luo XM, Zhang GP (2021) Tensile Plasticity of Miniature Specimens for a Low Alloy Steel Investigated by Digital Image Correlation Technique. steel res int 92(7):2000685. https://doi.org/10.1002/srin.202000685

    Article  Google Scholar 

  18. Peirs J, Verleysen P, Paepegem WV, Degrieck J (2011) Determining the stress–strain behaviour at large strains from high strain rate tensile and shear experiments. Int J Impact Eng 38(5):406–415. https://doi.org/10.1016/j.ijimpeng.2011.01.004

    Article  Google Scholar 

  19. Lou YS, Zhang SJ, Yoon JW (2020) Strength modeling of sheet metals from shear to plane strain tension. Int J Plast 134:102813. https://doi.org/10.1016/j.ijplas.2020.102813

    Article  Google Scholar 

  20. Denys K, Coppieters S, Debruyne D (2018) On the identification of a high-resolution multi-linear post-necking strain hardening model. Comptes Rendus Mécanique 346(8):712–723. https://doi.org/10.1016/j.crme.2018.06.002

    Article  Google Scholar 

  21. Zhang H, Coppieters S, Jiménez-Peña C, Debruyne D (2019) Inverse identification of the post-necking work hardening behaviour of thick HSS through full-field strain measurements during diffuse necking. Mech Mater 129:361–374. https://doi.org/10.1016/j.mechmat.2018.12.014

    Article  Google Scholar 

  22. Jenab A, Sarraf IS, Green DE, Rahmaan T, Worswick MJ (2016) The Use of genetic algorithm and neural network to predict rate-dependent tensile flow behaviour of AA5182-O sheets. Mater Des 94:262–273. https://doi.org/10.1016/j.matdes.2016.01.038

    Article  Google Scholar 

  23. Li XY, Roth CC, Mohr D (2019) Machine-learning based temperature- and rate-dependent plasticity model: Application to analysis of fracture experiments on DP steel. Int J Plast 118:320–344. https://doi.org/10.1016/j.ijplas.2019.02.012

    Article  Google Scholar 

  24. Jordan B, Gorji MB, Mohr D (2020) Neural network model describing the temperature- and rate-dependent stress-strain response of polypropylene. Int J Plast 135:102811. https://doi.org/10.1016/j.ijplas.2020.102811

    Article  Google Scholar 

  25. Lou YS, Huh H (2013) Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation. J Mater Process Technol 213(8):1284–1302. https://doi.org/10.1016/j.jmatprotec.2013.03.001

    Article  Google Scholar 

  26. Mogucheva A, Yuzbekova D, Kaibyshev R, Lebedkina T, Lebyodkin M (2016) Effect of Grain Refinement on Jerky Flow in an Al-Mg-Sc Alloy. Metall Mater Trans A 47(5):2093–2106. https://doi.org/10.1007/s11661-016-3381-2

    Article  Google Scholar 

  27. Zhemchuzhnikova D, Lebyodkin M, Yuzbekova D, Lebedkina T, Mogucheva A, Kaibyshev R (2018) Interrelation between the Portevin Le-Chatelier effect and necking in AlMg alloys. Int J Plast 110:95–109. https://doi.org/10.1016/j.ijplas.2018.06.012

    Article  Google Scholar 

  28. Rodriguez P, Srinivasan V (1995) Serrated Plastic Flow Revisited. Solid State Phenom. 42–43: 257–266. https://doi.org/10.4028/www.scientific.net/SSP.42-43.257

  29. Mirone G, Barbagallo R (2021) How sensitivity of metals to strain, strain rate and temperature affects necking onset and hardening in dynamic tests. Int J Mech Sci 195:106249. https://doi.org/10.1016/j.ijmecsci.2020.106249

    Article  Google Scholar 

  30. Khan AS, Pandey A, Gnäupel-Herold T, Mishra RK (2011) Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures. Int J Plast 27(5):688–706. https://doi.org/10.1016/j.ijplas.2010.08.009

    Article  MATH  Google Scholar 

  31. Pham QT, Lee BH, Park KC, Kim YS (2018) Influence of the post-necking prediction of hardening law on the theoretical forming limit curve of aluminium sheets. Int J Mech Sci 140:521–536. https://doi.org/10.1016/j.ijmecsci.2018.02.040

    Article  Google Scholar 

  32. Mohr D, Marcadet SJ (2015) Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities. Int J Solids Struct 67–68:40–55. https://doi.org/10.1016/j.ijsolstr.2015.02.024

    Article  Google Scholar 

  33. Sung JH, Kim JH, Wagoner RH (2010) A plastic constitutive equation incorporating strain, strain-rate, and temperature. Int J Plast 26:1746–1771. https://doi.org/10.1016/j.ijplas.2010.02.005

    Article  MATH  Google Scholar 

  34. Roth CC, Mohr D (2014) Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling. Int J Plast 56:19–44. https://doi.org/10.1016/j.ijplas.2014.01.003

    Article  Google Scholar 

  35. Pham QT, Kim YS (2017) Identification of the plastic deformation characteristics of AL5052-O sheet based on the non-associated flow rule. Met Mater Int 23(2):254–263. https://doi.org/10.1007/s12540-017-6378-5

    Article  Google Scholar 

  36. Coppieters S, Kuwabara T (2014) Identification of post-Necking hardening phenomena in ductile sheet metal. Exp Mech 54:1355–1371. https://doi.org/10.1007/s11340-014-9900-4

    Article  Google Scholar 

  37. Shang HC, Wu PF, Lou YS, Wang JZ, Chen Q (2022) Machine learning-based modeling of the coupling effect of strain rate and temperature on strain hardening for 5182-O aluminum alloy. J Mater Process Technol 302:117501. https://doi.org/10.1016/j.jmatprotec.2022.117501

    Article  Google Scholar 

  38. Ren C, An N, Wang JZ, Li L, Hu B, Shang D (2014) Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowl Based Syst 56:226–239. https://doi.org/10.1016/j.knosys.2013.11.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors also acknowledge the financial supports by the National Natural Science Foundation of China (Grant No. 52075423), the State Key Laboratory of Mechanical System and Vibration (Grant No. MSV202009), and the State Key Laboratory of High Performance Complex Manufacturing (Grant No. Kfkt2019-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanshan Lou.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Appendix A. Calibrated parameters of two hardening models

Appendix A. Calibrated parameters of two hardening models

Swift-Voce model

  

K

ɛ0

n

A

B

C

300 K

0.001/s

329.22

0.0058

0.3736

536.80

207.16

9.5117

0.01/s

321.38

0.0044

0.3639

508.96

189.88

11.349

0.1/s

296.09

0.0093

0.3839

496.86

193.09

13.310

1/s

357.43

0.0073

0.3300

449.75

171.46

12.587

373 K

0.001/s

464.62

0.0069

0.2738

426.85

146.09

6.5699

0.01/s

410.64

0.0047

0.3470

468.72

201.30

9.5559

0.1/s

245.75

0.0296

0.2927

502.22

192.86

11.565

1/s

604.78

0.0082

0.2680

227.76

109.34

29.467

423 K

0.001/s

529.02

0.0066

0.4110

276.39

194.67

13.007

0.01/s

324.22

0.0035

0.3531

458.41

241.24

7.5186

0.1/s

335.81

0.0073

0.3844

448.96

203.29

12.791

1/s

303.95

0.0085

0.3884

442.91

199.66

15.045

473 K

0.001/s

422.44

0.0053

0.4000

218.93

175.14

18.458

0.01/s

416.67

0.0091

0.4483

295.66

214.03

11.151

0.1/s

367.37

0.0061

0.3915

362.32

207.88

17.840

1/s

327.20

0.0083

0.3414

378.94

215.46

21.157

523 K

0.001/s

297.24

0.0005

0.2436

122.28

158.73

16.447

0.01/s

419.12

0.0041

0.3424

195.34

155.24

6.7202

0.1/s

390.67

0.0046

0.3632

239.01

187.16

28.470

1/s

308.31

0.0061

0.3370

319.59

205.61

16.095

573 K

0.001/s

246.33

0.00002

0.2587

100.12

144.23

41.066

0.01/s

425.91

0.0101

0.3829

84.721

145.56

17.087

0.1/s

390.94

0.0057

0.3844

195.18

152.38

4.7541

1/s

359.41

0.0011

0.2874

219.27

125.04

12.501

p-model

  

K

ɛ0

n

ɛmax

Q

p

300 K

0.001/s

561.40

0.0083

0.3245

0.11

116.67

6.6008

0.01/s

572.40

0.0061

0.3329

0.11

91.898

8.7197

0.1/s

560.32

0.0080

0.3312

0.11

76.900

10.077

1/s

543.01

0.0065

0.3182

0.19

31.664

16.544

373 K

0.001/s

514.87

0.0060

0.2926

0.18

119.04

4.1582

0.01/s

532.44

0.0070

0.2914

0.24

150.60

2.7750

0.1/s

451.93

0.0007

0.2295

0.18

135.57

2.8582

1/s

428.65

0.000004

0.2013

0.20

42.859

7.2813

423 K

0.001/s

388.73

0.0051

0.2256

0.28

351.75

0.6491

0.01/s

416.17

0.0027

0.2188

0.13

130.86

3.3693

0.1/s

474.89

0.0042

0.2702

0.15

63.979

7.8474

1/s

444.06

0.0032

0.2463

0.14

56.294

8.4066

473 K

0.001/s

285.11

0.0011

0.1793

0.12

143.71

1.9774

0.01/s

308.06

0.0010

0.1643

0.10

182.83

1.8083

0.1/s

324.20

0.0008

0.1449

0.08

198.70

2.0204

1/s

325.85

0.0008

0.1313

0.07

183.88

2.1703

523 K

0.001/s

206.12

0.0201

0.1557

0.09

118.85

1.7351

0.01/s

225.23

0.0026

0.1094

0.05

180.26

1.8348

0.1/s

277.31

0.0016

0.1412

0.10

125.80

2.1943

1/s

350.96

0.0087

0.2119

0.04

90.690

8.8691

573 K

0.001/s

129.21

0.0197

0.1005

0.09

72.214

1.2626

0.01/s

198.88

0.0109

0.1493

0.10

164.01

1.1483

0.1/s

247.26

0.0059

0.1776

0.09

177.84

1.6027

1/s

260.77

0.0003

0.1562

0.09

151.42

1.8904

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H., Zhang, C., Wang, S. et al. Large strain flow curve characterization considering strain rate and thermal effect for 5182-O aluminum alloy. Int J Mater Form 16, 1 (2023). https://doi.org/10.1007/s12289-022-01721-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-022-01721-4

Keywords

Navigation